i

Investigation and Development of Monitoring
Tools for a Storage Resource Broker

A Dissertation

Submitted In Partial Fulfilment Of
The Requirements For The Degree Of

MASTER OF SCIENCE

In

NETWORK CENTERED COMPUTING,
HIGH PERFORMANCE COMPUTING

in the

FACULTY OF SCIENCE
THE UNIVERSITY OF READING

by
Andrea Weise

4th March 2006

University Supervisor: Prof. Vassil Alexandrov (University of Reading)
Dipl.-Ing. Peter Puschmann (FHTW Berlin)
Placement Supervisor: Dr. Adil Hasan
(CCLRC Rutherford Appleton Laboratory)

Acknowledgements

“Hi Andrea, You ask some interesting questions!! I am just as mystified as you
are with the SRB log files.”

(Roger Downing, eScience Systems Administrator)

Any project requires directions and assistance in one or other way. Although not every
question got answered I would not have been able to manage this project without any
help. Therefore, I would like to thank

* Dr. Adil Hasan for his supervision and support

* Dipl.-Ing. Peter Puschmann for his supervision

* Prof. Vassil Alexandrov for his supervision

* Roger Downing for trying to solve the SRB log file mystery with me

* Dipl.-Ing./MSc Marc Bartels for his critical opinion on the dissertation

* Dipl.-Ing./MSc Martin Ostermayer for his critical opinion on the dissertation

* MSc Nicholas Laurance Carter for his English corrections

» Falk Wilamowski for endless discussions about how and why and keeping me

happy

For the unconditional support in so many ways especially over the last four years
and for believing in my capabilities I would like to thank my parents Heidemarie and
Bernhard Weise, without them my studies would not have been possible.

Abstract

The Storage Resource Broker (SRB) is a data grid management system developed
by the San Diego Supercomputer Center (SDSC). The software is able to unite and
manage storage media of many kinds on heterogeneous systems across the network
and, as a result, to make the storage infrastructure appear transparent for the end user.

This dissertation presents the development of multiple independent monitoring tools,
which operate within a network to support and improve the administration and debug
process of the SRB system. Emphasis is put on the design and implementation of a
software package used to successfully analyse, transfer and display the contents of the
SRB systems log files.

This report discusses basic fundamentals about network communication techniques
and examines state-of-the-art parsing methods. The design of the novel applications is
based on a client-server-architecture. The main approach is to provide a server, which
evaluates the SRB server log file and a client, which processes the parsed results of
the server. Communication between the two modules is implemented via/with remote
procedure calls in conjunction with the Extensible Markup Language (XML). Special
attention is payed on network security though integration of encryption algorithms.
To complete the set of tools and to provide more flexibility, a module to administrate
the server application has been developed along with a software component to present
the parsing results in a perspicuous way. Summarised, the dissertation provides in-
side knowledge about design and implementation issues, faced problems during the
development and the corresponding solutions.

il

Contents

1__Introduction|
(LI __About This Dissertation|
L2 Motivation|. e e
(1.3 Project Description|,
[2__Fundamentalsl

2.1 Basic Network Principles|
2.1.1 TCP/AP
212 HTTP
2.1.3 SMTPl. e

2.2 Client-Server-Architecturel
2.3 Network Security |.
231 SSI/TISI)
2.3.1.1 IVIEW| + v v v v o e e e e e e e e e
2.3.1.2 SSI Handshakel

313 Remarks 0.,

24 XML
RAT Overviewl o oot
242 Restrictions|
A3 APTS . . . oot
2431 DOMI. e

432 SAX . ..

25 Databasel.
[2.6 Python - “Batteries Included™o 00
[3.1 Existing Parsing Technologies|
[3.2 Communication Technologies|
B3 Daemonl o . oo e e e e e
3.4 SRBlLogFkilel,
B35 OpenSSL]
[3.6 SQLite - A Light Database Engine|

1l

AW W -

A

4.3.1 Client Class Diagram Design|.

4.4 Database Design|

@4.5.1 Virtualiser Class Diagram

Implementation|

[5.1 General Aspects|.
. mpleSSLXMLRPCServer| . .
[5.3 The Parsing Approach|
[5.3.1 Keywords|.
[5.3.2 Line Processing|.

[5.4 How to Stop a Daemon|.
DS XML ..o

[5.7 Graphical User Interface|
[5.8 Further Usability Improvements |

[7__Conclusion |

(/.1 Summary|

B

Future Prospects |

[References|

[A" Development Environment|

v

33
33
34
37
47
49
60
64
67
70
73

74
75
75
76
77
77
78
80
80
81
82
85
88

90
91
96
97

99
99
100

101

102

105

B Detailed Class Diagrams |

[C.1.1 Configure the Server|
(C.1.2 Examples|
C2 Clientl e
[C2.1 ConfiguretheClientf
(C2.2 Examples|o .

(C.3.1 Examples|
[C4 Remote Controfled
[C4.1 Examples|,
CS GZParsen e

D1 Serven e
[D.T.1 Module start_server.pyl. v o v v i i
[D.1.2 Module server_classes.py|
[D.1.3 Module utils server.pyl. . . o v v v v v v i i
[D.1.4 Script stop_server.shl

D.2 Clientl e
[D.2.1 Module start_client.py|. o o
[D.2.2 Module client_classes.py|l oo v v v v v v ...
[D.2.3 Module utils client.pyl. . . . « o v v v v i i
[D.2.4 Script stop_client.sh|

D irtualiser] L L L e
[D.3.1 Module qgui.py].
[D.3.2 Module gui_classes.py|
[D.3.3 Module qui_utils.pyl. v v v o

|G Declaration of Authorship|

107
107
108
109
110

111
111
112
113
113
114
115
116
120
121
122
123

125
125
125
132
158
161
162
162
170
194
196
197
197
210
226
237
254

261

262

267

List of Figures

(L1 SRB Architecturel 6
2.1 _TCP/IP Protocol Stack based on the DoD-Modell 9
22 TCPHandshakel 10
2.3 _TCP Connection Termination| 10
24 SSL Protocol Stackl 14
[2.5 Possible SSLL Handshake (red = optional) | 15
2.6 Possible XML Processingf., 21
4.1 Client-Server-Relation (I'n){ 34
4.2 Basic Client-Server Design| 35
4.3 Server Class Diagram| 38
4.4 Flow Chart analyse_logfile| 43
4.5 Client Class Diagram| 51
4.6 Flow Chart ClientThread — run() PartI-III 55
4.7 _Flow Chart ClientThread — run() PartIV| 56
[4.8 Flow Chart Constructor MyDatabase|. 58
4.9 Cardmality withm ERM| 61
4.10 Entity Relationship Modell 61
.11 Database Design| 62
.12 Virtualiser Class Diagram|. 68
.13 Remote Controller Class Diagram| 72
5.1 GndLayout| 86
[5.2 Particular Error as Line Diagram| 87
[6.1 Application Overview|. 90
[6.2 psOutputServer] 94
[6.3 Local Disk Space Problem| 94
64 Mutex Testl 95
[6.5 Database Corruption Detection| 96
6.6 psOutputClient| 97

Vi

[B.1 Remote Controller Class Diagram| 107
[B.2 Server Class Diagram| 108
[B.3 Client Class Diagram| 109
[B.4 Virtualiser Class Diagram|. 110
(C1 MammWindow| 118
(C2 FErrorWimdowllo 119

Error Win Im. .. 119

vii

List of Tables

4.1 Server Parametersl 37
{4.2 Member Variables Class WorkingServer| 39
4.3 Member Variables Class MyParserThread|. 40
4.4 Member Variables Class LogFileParser| 41
4.5 Member Variables ClassRPCl, 44
4.6 Member Variables Class SimpleSSLXMLRPCServer| 45
[4.7 Member Variables Class MyClientThread|. 46
4.8 Member Variables Class Mutexl. 46
4.9 Client Parameters| 49
4.10 Member Variables Class MyClient|. 49
4.11 Member Variables Class WorkerThread| 52
4.12 Member Variables Class ClientThread 53
|4.13 Member Variables Class MyContentHandler| 57
|4.14 Member Variables Class MyDatabasel 58

15 Member Variabl lassMaill 59
4.16 Member Variables Class Mutex| 60
{4.17 Database Table messages|. 62
4.18 Database Table error|. 63

19 D Table host| 63
[4.20 Database Table project| 64
[4.21 Database Table host _project| 64
4.22 Database Queries| 64
M.23 Virtualiser Parametersl. 65
|4.24 Member Variables Class Display| 67

25 Member Variabl lass Picturel 69
4.26 Remote Controller Parameters| 71
4.2/ Member Variables Class Adminf. 72
428 GZ Parser Parameters| 73
[5.1 Parser Comparison|, 81
[6.1 TestSystems| 92
6.2 TestResults| 93

viii

[A.1 TestSystems| 106

[CI1 ServerParameters i 111
[C.2 Configuration File Servery 0oL 112
(C.3 Client Parameters| 113
[C.4 Configuration FileClient| 114
[CS Virtualiser Parameters|. 116
[C.6 Remote Controller Parameted 121
[C7 GZParser Parametersl 123
[C.8 Configuration File GZ Parser] 123

ix

Listings

2.1 XMLFile Example| 17
22 AfunctioninCl. 23
2.3 AfunctioninPython| L. 23
3.1 SRBLogFileEntry|. 29
3.2 SRBLogFileEntries| 30
5.1 SimpleSSLXMLRPCServer|« v v v v v v v v iii o 76
[3.2 Script stop_client.sh|. 78
5.3 write_entryfunctionl 81
[5.4 Client Synchronisation Mechanism|. 83
[5.5 ANSIEscapeCodes|. 88
[D.1 Module start_server.py| 125
ID.2 Module server_classes.py|. oo 132
[D.3 Module utils_server.py| 158
[D.4 Script stop_server.shl. oo 161
[D.5 Module start_client.pyl o o e 162
[D.6 Module client_classes.py|. o o v v v i s 170
[D.7 Module utils_client.py| 194
[D.8 Script stop_client.shl. L L. 196
[D.9 Module gui.py|l e 197
[D.10 Module gui_classes.py|. v i 210
[D.11 Module gui_utils.py| 226
[D.12 Module admin_server.py| oo 237
[D.13 Module gz_parser.py| 254

Abbreviations

ASCII
ANSI
awk
bash
CCLRC
CORBA
CPU
DTD
DOM
DNS
egrep
ERM
GCC
GNU
GUI
HTTP
IDL
IEC
IEEE
IETF
1P
IPX
ISO
MCAT
MD5
oop
ORB
OSI Reference Model
RFC
RMI
RPC
SAX

American Standard Code for Information Interchange
American National Standards Institute

Alfred V. Aho, Peter J. Weinberger, Brian W. Kernighan
bourne again shell

Council for the Central Laboratory of the Research Councils
Common Object Request Broker Architecture
Central Processing Unit

Document Type Definition

Document Object Model

Domain Name Server

extended global regular expression printer
Entity Relationship Model

GNU Compiler Collection

GNU’s Not Unix

Graphical User Interface

Hypertext Transfer Protocol

Interface Definition Language

International Electrotechnical Commission
Institute of Electrical and Electronics Engineers
Internet Engineering Task Force

Internet Protocol

Internetwork Packet eXchange

International Standards Organisation

Meta Data Catalog

Message Digest 5

Object Oriented Programming

Object Request Broker

Open Systems Interconnection Reference Model
Request For Comments

Remote Method Invocation

Remote Procedure Call

Simple API for XML

X1

SDSC
SHA1
SMTP
SQL
SRB
SSL
XDR
TCP
TLS
UID
W3C
XML

San Diego Supercomputer Center
Secure Hash Algorithm 1
Simple Mail Transfer Protocol
Structured Query Language
Storage Resource Broker
Secure Sockets Layer

External Data Representation
Transmission Control Protocol
Transport Layer Security

User Identification (Number)
World Wide Web Consortium
Extensible Markup Language

Xii

1 Introduction

Nowadays data management is an important issue, especially for companies or insti-
tutes which have to handle millions of files and tera-bytes of data. To unite different

storage media in different location is often a big problem.

Modern grid technologies unite many systems within are virtual network. By doing
so, computational power can be achieved which can be higher than today’s super com-
puters with relatively low costs. Grid architectures can be classified into computing
grids, access to distributed computing resources, and data grids, access to distributed
databases [1l]. Data grids are often used to handle massive storage resources and to
provide a constant availability of data. A pivotal role within data grids falls to the data
management. It can be very difficult for the end user to locate the wanted data. Data

migration and data replication are essential issues as well.

The Storage Resource Broker (SRB) developed as a project at the San Diego Super-
computer Center (SDSC) is such a data management application for a data grid en-
vironment and offers solutions for the aforementioned problems. The SRB system
is a standalone application and relatively compact. The usage and administration of
the systems showed that the analysis of the SRB system behaviour sometimes can be

challenging. To ease this process this project was carried out.

The project is concerned with the investigation and development of tools that will aid
in the administration of the SRB. The project provides highly configurable tools to

monitor SRB server log files on remote machines.

1 Introduction 1.1 About This Dissertation

1.1 About This Dissertation

In this section a brief overview about the dissertation structure and used conventions

are given.

In chapter 2] the background to understand the project is provided. Basic technologies

are described and explained.

Chapter [3]is concerned with the analysis of existing technologies and project relevant
issues. Among other things the SRB log file is analysed there as well as existing

software products.
Possible solutions and specifications are presented in chapter [

Based on the made decisions a few interesting implementation aspects are surveyed

more closely in chapter 5
Gained results and made tests are illustrated in chapter [6]
Chapter [7| finally presents the conclusion about this project.

An outlook in the future can be found in chapter [§]

Following typographic conventions are used to make this thesis more readable:

italic citations

bold important statements
typwriter source code or commands
[number] reference number

1 Introduction 1.2 Motivation

1.2 Motivation

The Council for the Central Laboratory of the Research Councils (CCLRC), which
supports this thesis, was founded in 1995. The CCLRC owns and operates the Ruther-
ford Appleton Laboratory in Oxfordshire (RAL), the Daresbury Laboratory in Cheshire
and the Chilbolton Observatory in Hampshire [2]. The laboratories support and drive
forward research in many areas. “New Science through the Grid.” 3] is the vision of
the e-Science Centre, which is just one programme of the CCLRC. The e-Science Cen-
tre is running several different programmes, all connected to grid technology. One of
the programmes is called “Data Storage and Management” and investigates the ques-
tion of storing data under several aspects, like the improvement in the quality of data
curation and digital preservation [3]. The Storage Resource Broker is on of the projects

there.

For the development and usage of existing SRB systems it is difficult to debug or
supervise a running system. Errors e.g. due to problems with a server connecting to
a remote SRB master or if the meta data catalog (MCAT) is server down as well as
data or hostConlfig file errors have to be detected effectively to provide a good service.
Hence, it is also not easy to evaluate the performance of the SRB system within a
reasonable time. Therefore, there is a great demand for monitoring and maintenance
tools for supporting the analysis and administrative work which will improve the SRB

system performance and availability.

1.3 Project Description

The project deals with the investigation and development of tools for monitoring and
administrating the SRB system. The main emphasis of the project are the log files of
the SRB system, which have to be analysed. According to the results of the analysis a

tool has to be developed, which is able to

* parse the SRB log file

* adopt individual configuration concerning

— parsing itself (e.g. parsing keywords)

1 Introduction 1.4 State-of-the-Art

— file organisation

* preprocess the parsed data
* offer an interface to access the preprocessed data

* offer an interface to manipulate the parsing process remotely

Furthermore, a tool is required which is finally processing the parsed data. Processing
in this case means inserting the preprocessed data into a database, displaying the data
in a clear way to the user and notifying the user via email. The tools can be divided
into several parts or individual applications, but the main emphasis lies on a client-
server-application, whereas the server parses the SRB log file. The client is concerned

with storing the data in a database and notifying specified user via email.

The access to the application which is running on the same system as the SRB server
should be secured in that way that the connection is encrypted. This is needed to secure
the SRB system.

The application is to be written in the script language Python Version 2.2.3 for a UNIX
operation system using an object oriented approach. Python offers many different
packages, but for this application the attempt is to use the standard library and to
employ as few of those additional packages as possible to keep the tools flexible and
small. All applications written during this projects are individual software products
and primarily console applications. To ease the evaluation of the parsing results graphs

with a small graphical user interface have to be developed.

1.4 State-of-the-Art

Nowadays, data grids are becoming more and more important, especially in the aca-
demic world. Grid computing denotes all methods, which unite the computing power
of all computer system within a network. A data grid offers data resources addition-
ally. By using data grids, it is possible to use data which might be distributed on
several computer systems. The grid can be designed that way that the user does not
know, where exactly the data is located. This possible transparency is called data vir-

tualisation.

1 Introduction 1.4 State-of-the-Art

As an project of the San Diego Supercomputer Center (SDSC) the Storage Resource
Broker got developed.

The SDSC Storage Resource Broker (SRB) is client-server middleware that provides a
uniform interface for connecting to heterogeneous data resources over a network and

accessing replicated data sets. [4]

The system offers possibilities for

collection-building
* managing data
* querying data
* accessing data

* preserving data

in a distributed data grid network. The software is used to support data grids, digital

libraries, and persistent archives [5] and is running successfully in many projects.

Each SRB server is managing and brokering storage resources which can be accessed
via a computing system. The SRB can be described as a federated server system. This

way of implementation provides several benefits:

* Location transparency

The user does not need to know the exact location of the data that needs to be
accessed. He can authenticate at any SRB server to access any in the system

stored data.

* Improved reliability and availability
The SRB system has a certain intelligence to organise and control the stored data
within itself. This may include data replication.

* Logistical and administrative reasons

The SRB system can be run on many operation systems. Different security pro-
tocols and policies might be involved. Therefore, a single sign-on environment

and Access Control Lists are maintained for each digital entity.

1 Introduction 1.4 State-of-the-Art

* Fault tolerance
If data is not available, the system is redirecting automatically the user to the
replicated data on a different system.

* Integrated data access

Access to back-up data is Possible.

¢ Persistence

Recursive directory movement enables copying data to a new system and there-

fore data migration, without affecting access.

Figure(l.1|gives a brief overview of the SRB architecture.

MCAT Server
SRB Server

SRB Client ‘ﬁ' ‘ ‘ Relational

Database

FIGURE 1.1: SRB Architecture

The core is the SRB server, which accepts enquiries from the SRB client. The server
knows all meta data about users, resources and datasets. Meta data are basically data
about data. They describe the stored data concerning content, type, location et cetera.
This structure enables the user to gain quickly a basic summarised knowledge about
data he might be interested in. Through the meta data structure, the original data is

well organised and fast searchable.

Basically there are two different kinds of SRB server exist:

* SRB server with connection to a Meta Data Catalog (MCAT)

¢ SRB server with an MCAT

The SRB server with an MCAT or connection to the MCAT is able to authenticate
clients. This is done by the master process. After the client is successfully authenti-
cated, the master process hands the connection over to the SRB agent, who handles all

the client enquiries.

1 Introduction 1.4 State-of-the-Art

Each server maintains one log file. All running SRB server processes write this log
file if an event happens. This project will evaluate this log file since the SRB system is
not providing such possibility. With those evaluation tools the project will support and
improve the SRB system administration and the debug process and finally improve the

SRB system performance.

2 Fundamentals

The SRB system can be distributed over several individual systems connected through
anetwork. Therefore, the application parsing the SRB log file as well as the application
processing the parsing results have to operate across a network.

In this chapter basic technologies in conjunction with communication techniques across
networks as well as Internet security issues are explained to be able to understand the

application development.

The collected data by the parser has to be structured to support quick processing. XML
provides such a structure. This chapter is also used to point out XML handling and
certain XML restrictions. Furthermore, the for this project used script language Python

is introduced.

2.1 Basic Network Principles

A network can be described as a pool of different and individual electronically systems
(e.g. computer systems) which are connected with each other. There are several net-
work structures with different topologies possible such as ring, tree or bus topologies.
Even a combination of different topologies are not unusual. The network enables the
communication of the technical systems with each other. According to the way the
data is transferred, the network can be classified as wired networks (e.g. Ethernet or
Token Ring) or wireless networks (e.g. Bluetooth or networks of the type IEEE 802.11
(Institute of Electrical and Electronics Engineers)). The communication is carried out
with protocols. The design of the protocols and the principles of network communica-
tion are based on the Open Systems Interconnection Reference Model (OSI Reference
Model). The OSI Reference Model counts as a standard model for communication
within a network and consist of seven layers. Each layer of the OSI model repre-

sents a function performed when data is transferred between cooperating applications

2 Fundamentals 2.1 Basic Network Principles

across an intervening network [6]. A layer can contain several protocols to fulfil its

requirements.

2.1.1 TCP/IP

A network protocol describes rules of data exchange, which have to be applied in
order to enable communication between technical systems. These rules consist of a
certain syntax and semantic to define the protocol. In our virtual world, several of such
protocols exists. For example Novell introduced a network protocol call Internetwork
Packet eXchange (IPX). Apple Talk was developed 1980 by “Apple Computer” to
create a simple access to shared resources such as files or printers [7]. But the most
common used and therefore most widely spread protocol is the Transmission Control
Protocol (TCP). Together with the Internet Protocol (IP), the protocol suite TCP/IP is
formed. Literature provides TCP/IP architectures with three to five functional levels.
Figure [2.1] [6] shows the TCP/IP protocol architecture based on the model that the
United States Department of Defence (DoD) original developed.

Layer Example
4. Application Layer HTTP, FTP,

— consists of applications and SMTP, POP3,
processes that use the network DNS, DHCP

>

3. Host-to-Host Transport Layer
provides end-to-end data TCP, UDP
delivery service

Sending Data

2. Internet Layer
defines the datagram and IP, ICMP
handles the routing of data

ejeq Buinieoay

<

1. Network Access Layer
consists of routines for PPP, SLIP —
accessing physical networks

FIGURE 2.1: TCP/IP Protocol Stack based on the DoD-Model

Each layer provides its own structure and conventions.If data has to be send it is send

down the stack to the network and vice versa if data is received. To enable compat-

2 Fundamentals 2.1 Basic Network Principles

ibility and successful transmission each layer adds certain control information. This
process is called encapsulation. On the receiver side each layer removes its own con-
trol information before passing on the data to the next layer above. The idea is that
each layer can work without knowing the structure of the surrounding layers. In reality

the layers are defined in that way, that data is passed through the stack efficiently.

The Transmission Control Protocol was standardised in 1981 under the Request For
Comments (RFC) 793 by the Internet Engineering Task Force (IETF). The IETF is an
international association of network technicians, producers and users, which are re-
sponsible for proposals concerning the standardisation of the Internet. TCP is situated
in the transport layer of the OSI Reference Model and in the host-to-host transport
layer of the DoD-Model.

To establish a connection the three way (or three message) handshake is used. The
system, which is initiating the handshake sends a synchronisation packet (SYN) with
a arbitrarily chosen sequence number x to the opposite system. The opposite system
acknowledges the receiving by incrementing the sequence number (ACK = x + 1).
Further, a SYN packet with another sequence number y is send back to the initiating
system. Again the receiving of this packet gets acknowledged by incrementing the just
received sequence number (ACK = y+ 1). The connection is established. Figure
illustrates the procedure. Closing of the connection works similarly controlled and is
shown in Figure[2.3] Instead of a SYN packet a end packet (FIN) is sent. The receiving
of the packet is again acknowledged (ACK).

Client Server Client Server

SYN’ SEQ =5

FIGURE 2.2: TCP Handshake FIGURE 2.3: TCP Connection Ter-

mination

TCP is a connection-oriented and end-to-end protocol. It verifies the data integrity

10

2 Fundamentals 2.1 Basic Network Principles

through a check sum in the packet header. The correct order of the packets is ensured
by a sequence number. The sender sends packets again, if no acknowledge was re-
ceived or a timeout occurs. The receiver is able to put the packets in the right order
and discard double packets. Therefore, TCP can be considered as a reliable transfer

protocol.

The Internet Protocol was standardised 1981 under RFC 791 by the IETF and the most
commonly used version is the Internet Protocol Version 4 (IPv4), although IP Version
6 (IPv6) is slowly supported by more and more systems. Since TCP is organising the
packets, IP is just taking care of sending the packets. Hence, IP is a connectionless
protocol. There is not continuing end-to-end communication. IP can be integrated in
the OSI Reference Model in the network layer and in the TCP/IP architecture in the

Internet layer.

2.1.2 HTTP

HTTP stands for Hypertext Transfer Protocol. It is stateless protocol [8] for transfer-
ring data within a network and can be placed in the application layer of the OSI Refer-
ence Model and TCP/IP stack architecture. HTTP is used to transfer websites from a
remote computer system to a local system. If alink like http://www.fhtw-berlin.de/
info.html is activated, a request is sent to the system with the name www. fhtw-berlin.de
to deliver the file info.html. The system name is translated to a IP address by the
Domain Name Service (DNS) protocol. For the transfer the TCP protocol is used on

the standard port 80. The current version is HTTP 1.1.

2.1.3 SMTP

The Simple Mail Transfer Protocol (SMTP) is defined in RFC 2821 and is used to
transfer mails. Like HTTP it can be situated at the application layer of the OSI Ref-
erence Model and TCP/IP architecture. The mail, subject to a certain syntax, is send
to an SMTP client. The client determines the SMTP server using other existing tech-
nologies. The mail is then send to the server directly or through other intermediary
systems. The commands exchanged between client and server or the systems in be-

tween are defined in the Simple Mail Transfer Protocol.

11

2 Fundamentals 2.2 Client-Server-Architecture

2.2 Client-Server-Architecture

Transferring data means communication between two systems. The division of the
work between the system can be derived form the host architecture. A host is a system
within a network which offers services. Beside peer-to-peer architectures or main-

frame architectures often client-server-architectures are found.

The client-server-architecture can be called as an architecture of distributed intelli-
gence and is cross-platform compatible. It is possible to run client and server on
different operating systems. As in peer-to-peer networks, where the load is equally
distributed, the work load between client and server is divided differently. The server
usually provides services, which can be resources or possibilities to access those re-
sources (“Back End”). The client forms the “Front End” as an application to use the

services the server offers.

This architecture has the advantage, that all resources are gathered and centralised at
one dedicated server and they are available for many clients. The idea is to source out
processing intensive tasks to the server. The client only represents the interface to the
server/ processing results. The performance of the architecture depends on the server.
However, if the server fails the architecture/ application fails which is a drawback of

this system.

2.3 Network Security

To establish a secure connection between client and server is one of the issues in this

project. But what does it exactly mean, having a “secure” connection?

First of all, what is meant by secure connection is data confidentiality. Nobody should
be able to eavesdrop the sent data. Another important point is data integrity. If some-
body is tampering around with the data, this should be detected by the system. Au-
thentication is an essential issue as well. Only certain people should be able to access

and operate the server.

To ensure data confidentiality cryptographic algorithms can be used. At the moment,

there are quite a few algorithms, for example

* Symmetric Key Encryption

12

2 Fundamentals 2.3 Network Security

Public Key Encryption

Cryptographic Hash Functions

Message Authentication Codes

Digital Signatures

Symmetric key algorithms using only one key to encrypt and decrypt data, but once

the key is discovered, confidentiality cannot be guaranteed.

Public key cryptography uses two keys, a public key to encrypt the data and a private
key to decrypt. The public key gets freely distributed and everybody is able to encrypt,

but only the receiver, who owns the private key is able to decrypt the message.

Cryptographic hash functions are special checksum algorithms, which produce a fixed-
size output (message digest). Those algorithms like MD5 (Message Digest 5) or SHA1
(Secure Hash Algorithm 1) are meant to be one way encryption functions. They are
often used for password purposes, because the same input creates always the same
output. If a secret key is combined with the producing of the message digest, then

those structures are called Message Authentication Codes.
Digital signatures are used to authenticate messages without the need of secret keys.

Data integrity can be detected with checksums. Authentication can be realised through
passwords or certificates. A certificate is a piece of data that includes a public key
associated with the server and other interesting informations, such as the owner of the
certificate, its expiration date, and the fully qualified domain name associated with the

server [9].

Cryptographic can provide solutions to data confidentiality, data integrity, authenti-
cation, and non-repudiation. To implement all of these features itself can be very
difficult and would consume a thesis of itself. Fortunately there exist a few security
suites, which are trying to implement all those ideas and still make it possible for other

people to use it in a comfortable way.

13

2 Fundamentals 2.3 Network Security

2.3.1 SSL/TSL
2.3.1.1 Overview

The most widely spread security protocol is currently Secure Sockets Layer (SSL)
protocol. Developed originally by Netscape, it is designed to use TCP as a communi-
cation layer. SSL provides a reliable end-to-end secure and authenticated connection

between two points over a network [10] and addresses following targets:

¢ Authentication

Key cryptographic technologies, already describes on page [12] are supported to

authenticate both sides within the network communication.

* Data Integrity

The SSL protocol ensures that nobody is able to tamper with the data.

 Data Privacy

The data produced by the SSL protocol itself and the data of the application are

secured by the protocol.

To gain the aforementioned aims the SSL protocol consists of several protocols as
illustrated in Figure[2.4] [10].

SSL handshake
protocol

SSL cipher
change protocol

SSL alert
protocol

Application Protocol
(eg. HTTP)

SSL Record Protocol

TCP

IP

FIGURE 2.4: SSL Protocol Stack

The Application Data Protocol is responsible for the data transfer between the appli-
cation and SSL. To establish a SSL connection, the SSL Handshake Protocol, the SSL

14

2 Fundamentals 2.3 Network Security

ChangeCipher SpecProtocol and the SSL Alert Protocol are used. These three pro-
tocols cover the areas of session management, cryptographic parameter management
and transfer of SSL messages between the client and the server [[10]. The Alert Proto-
col is used to forward warnings and error messages. The ChangeCipher SpecProtocol
initialises the cryptographic procedure. Through the Handshake Protocol, server and
client negotiate the cryptographic procedure. Data encryption, data integrity, and if
required data compression is assured by the SSL Record Protocol. This protocol is
also able to encapsulate data, which is sent by other SSL protocols and is therefore
responsible for the SSL data check.

2.3.1.2 SSL Handshake
The SSL handshake is the basis for each SSL connection and has a particular impor-

tance. Figure [2.5][10] shows a possible SSL handshake for establishing a connection.

Client Server

Clier,t hello

,,,,,,,Cert,-ﬁc —
n ———ca B
o 1e8te verificati,
server he e .
W
comice | |
server key €
7 request for

o\‘\en,ti,s,,,C,,@mﬁga!@,/

chan e cipher S! ec

‘W

\
\
\
\
\
\
noe | Chan .
2(2\1@/9,, ‘ ec’ hers e
\
\
\
\
\
\

FIGURE 2.5: Possible SSL Handshake (red = optional)

The client starts the connexion establishment by sending a “client_hello”, a so-
called challenge (value), a list of supported cryptographic and compression procedures,

and if available, a session identification from an earlier session to the server.

15

2 Fundamentals 2.3 Network Security

The server chooses a procedure and answers with a “server_hello”. If the indicated
session identification is found in the servers’s cache, the former agreed master key can
be used. Otherwise the server sends his certificate (optional, needs to be requested
from the client), which can be one or a chain of certificates, and the chosen codes
(cryptographic and compression procedures) to the client. Depending on the negoti-
ated method of key exchange, the server sends a ServerKeyExchange message which
is a list of certificate types. The server finishes his part by requesting a client certificate

(optional) and sends the “ServerDone” message.

The client generates a master key and encrypts this key using the servers’s public key.
The encrypted master key is sent back to the server. The master key and connection
concerned data is used to derive a session key by using a hash function (e.g. MDS5). The
session key is required for the data encryption. The master key is not used for that. For
each direction (sending and receiving) an individual session key is generated. Finally,
the client encrypts the connection identification with its own session key and sends it to
the server including the finished message. The server encrypts the challenge with his
session key and sends it to the client including his finished message. The client verifies
if the challenge has the same value as the challenge he has sent at the beginning. If the
values are identical, the client knows that the servers certificate is authentic. Otherwise

the server would not have been able to decrypt the master key.

The server has the possibility to verify the authenticity of the client, too. The request
contains a challenge value and a list of available authentication procedures. The client

responds with his certificate and authentication information.

After the handshake completion the data gets encrypted according to the agreed pro-

cedure. A Message Authentication Code is added to the data to ensure data integrity.

2.3.1.3 Remarks

The current version is SSLv3. Version 2 is still available but is considered as insecure,

because of fundamental design problems [9]] and should not be used.

In 1996, the IETF standardised Internet security methods and they used SSL 3.0 as
a basis. Under RFC 2246, they released 1999 a new Transport Layer Security (TLS)
protocol version 1.0. TSL implements the same features as SSL and contains addition-

ally more interoperability and expandability towards applications. Additional RFC’s

16

2 Fundamentals

2.4 XML

and extensions have been published by the IETF in connection to TSL. At the moment,

the IETF works on the new version TLS 1.1, a draft is available so far.

TLS can be seen as the successor of SSL and often both terms are used equally.

2.4 XML

This project requires a platform independent possibility to exchange data. A very
flexible way of data exchange offers the Extensible Markup Language (XML). XML

is the state-of-the-art in that area and there are hardly any other technologies which

provide such flexibility. Using XML for this project provides also an interface for any

other application to use the gathered data.

2.4.1 Overview

XML is a subset the Standard Generalized Markup Language (SGML) defined by the

International Organisation for Standardisation (ISO) 8879.

XML is a markup language for documents containing structured information [11]. A

markup language is a mechanism to identify structures in a document [11]]. Defined by
World Wide Web Consortium (W3C), XML describes rules for the document layout.

A simple XML document as an example is listed in Listing 2.1}

LISTING 2.1: XML File Example

1 <?xml version="1.0" encoding="utf-8" standalone="yes"?>
2 <!DOCTYPE message [
3 <!ELEMENT message (entry)>

4 <!— a message consists of entries —>

5 <!ELEMENT entry (date, time, error_number, error_string , linenumber)>
6 <!— entry contains date, time, error_number, error_string , linenumber—>
7 <!ATTLIST entry

8 number CDATA #IMPLIED

9 >

10 <!ELEMENT date (#PCDATA)>

11 <!— data contains the data text and nothing else —>

12 <!ATTLIST date

13 typ CDATA #REQUIRED

14 >

15 <!ELEMENT time (#PCDATA)>

16 <!— time contains the time text and nothing else —>

17

2 Fundamentals 2.4 XML

<!ELEMENT error_number (#PCDATA)>

31>

<!— error_number contains the error_number text and nothing else —>
<!ELEMENT error_string (#PCDATA)>
<!— error_string contains the error_string text and nothing else —>
<!ELEMENT linenumber (#PCDATA)>
<!— linenumber contains the linenumber text and nothing else —>
<message>
<entry number="1">

<date typ="database">2005—-10-23</date>

<time>01:00:01</time>

<error_number></error_number>

<error-string>portalConnect: connect msg timed out for pid 25133</error_string>
<linenumber>10280</linenumber>

</entry>

</message>

In the first line the XML declaration is found. This declaration consist of a “<” fol-
lowed by a “?” and the word “xml1” in small letters inclusive the closing “>". Here
the used XML “version” can be defined, too. The current version is 1.0 which is
supported by most common parsers. The optional attribute encoding defines, which
character encoding is used for saving the XML file. With the noncompulsory attribute
standalone it is possible to tell the parser if the file refers to an internal or external

Document Type Definition (DTD), where as standalone="yes" indicates an internal
DTD.

The Document Type Definition describes the possible elements, attributes, entities
and nesting possibilities of a XML document. The DTD seperates the data from the
data definition. DTD are used to validate the XML document. In the given exam-
ple, an internal DTD defines the rules (lines 2 - 23). The document type declaration
starts with <!DOCTYPE followed by space and the name of the document type. Then
the ELEMENT message is introduced. message consist of the element entry, where
entry again is formed of the elements date, time, error _number, error_string
and linenumber. Elements can have attributes, indicated by the keyword ATTLIST.
The keyword #REQUIRED defines, that the attribute has to have a value, the oppo-
site is indicated by the keyword # IMPLIED. The elements date, time, error_number,
error_stringand linenumber finally carry the data. A ENTITY defines a “wildcard”,
which can be used later in the document. Names for elements, attributes and entities

can consist of

18

2 Fundamentals 2.4 XML

* letters (capital and small),
e numbers (0 till 9),
* punctuation characters like

_ (underscore),

- (hyphen),
. (dot),

: (colon), where as the colon is reserved for namespaces.

The first character has to be a letter or any allowed punctuation character. Names must

not have a space.

The actual XML file (lines 25 - 33) has to use exactly the same elements defined in
the DTD above. Each element is framed by a start tag (<element name>) and an end
tag (</element name>). If there is a syntax error, the XML document is not “well-

formed”. From the rules defined in the DTD it is clear, that the elements

e <date> ... </date>

e <time> ... </time>

e <error_number> ... </error_number>
e <error_string> ... </error_string>

¢ <linenumber> ... </linenumber>

can only be within the element <entry> ... </entry>. A value assignments have to be
in quotes. Everything between <! — — and —— > are comments and are ignored by

the parser.

2.4.2 Restrictions

An XML file is considered as “well-formed” and therefore abides the rules, if

¢ the file has an XML declaration which refers to XML

19

2 Fundamentals 2.4 XML

there is always a start and end tag

there is at least one data element

there is a element that contains the data

all attribute values wrapped in quotes

all attributes do not contain the character “<”

An XML file is “valid” if the rules defined in the DTD are implemented. Thus, “well-
formed” and “valid” are different subjects concerning XML files. The design and use
of a DTD is not mandatory and in many cases not necessary, for example if the parser

is not verifying the validity of the document.

Within an XML file, all characters of the norm ISO/IEC (International Electrotechnical

Commission) 10646 (unicode system) are allowed:

¢ hexadecimal values #x20 to #xD7FF

¢ hexadecimal values #xE000 to #xFFFD

hexadecimal values #x10000 to #x10FFFF

hexadecimal values #x9 (tabulator), #xA (line feed) and #D (carriage return)

2.4.3 API's

To extract, analyse and preprocess XML structures, a so-called parser is used. Figure
describes how a parser might work. In general there are two different kinds of
parsers. First of all, the parser which validates the source code, what requires a DTD

and a parser, which do not do validation.

20

2 Fundamentals 2.4 XML

XML - Processing Unit

Document \
-
B 4
/ *
- __>

FIGURE 2.6: Possible XML Processing

DTD

The basic functions of each parser package are indicated by the “XML - Parser”. Most
parsers also offer the possibility to save the document as a tree structure. The tree
structure complies the Document Object Model (DOM) according to the W3C. Two
of the most application programming interfaces (API) used by XML parsers are DOM
and SAX (Simple API for XML).

2.4.3.1 DOM

The DOM is an application programming interface for HTML and XML documents.
The architecture within the document is oriented on a tree structure. The individual
nodes can be seen as objects which have functions and identities. The DOM estab-
lishes:

* interfaces and objects for representing and manipulating the document

* syntax of interfaces and objects

* connections among interfaces and objects

The data is placed into the objects where it is protected from external manipulation.

DOM defines functions to manipulate the data.

21

2 Fundamentals 2.5 Database

2.4.3.2 SAX

The SAX API is no W3C standard and deals with the XML information as a single
unidirectional stream. That means, it is not possible to manoeuvre within the document
like it is possible using the DOM. If data has to be re-read the document has to be

parsed again. The SAX parsers are implemented as an event-driven model.

2.5 Database

A database is an organised collection of stored data. Usually its contents can be ac-
cessed, managed and updated easily. There are several types of databases. The most
common used database is a relational database which is a tabular database. A relational
database consists of several tables which are connected with each other through rela-
tions. Each table contains datasets. A datasets consists of several attributes. Unique
keys enable explicit mapping of datasets. A distributed database is spread of several
nodes within a network. In object-oriented databases, the data is defined in object

classes and subclasses.

It is assumed that the process of normalisation during a database design is common
knowledge and is therefore not explained. Further explanation can be found in relevant

literature such as “Introduction to Database Systems” by C.J. Date [12].

2.6 Python - “Batteries Included”

Python, named after “Monty Python’s Flying Circus”, was developed by Guido van
Rossum in the Netherlands in 1990 and is recognised as a successor of the ABC pro-

gramming language. Python is considered as script language.

Python is an interpreted, interactive, object oriented programming language [[13]]. It
is a multi-paradigm language, allowing several styles of programming such as object
orientated or structured programming. Data types are dynamically managed and it uses
garbage collection as a memory management. Garbage collection is a method which
frees regularly and automatically unused memory and other system resources. Objects

which are not reachable within the memory are automatically freed.

22

2 Fundamentals 2.6 Python - “Batteries Included”

To be simple and concise, Python consist of only a few key words and the grammatical

syntax is reduced and optimised to support lucidity.

Python differs from other programming languages in terms of the code structure, as it
uses the indentation itself to create blocks. Listing [2.2]and Listing [2.3| show a compar-

ison of a function written in C and Python, respectively.

LISTING 2.2: A function in C. LISTING 2.3: A function in Python.

int test (int choice, int value) def test (choice, value):

1 1
2 { 2 if choice ==
3 if (choice == 0) 3 printf "nothing chosen"
4 { 4 return value
5 printf ("nothing chosen"); 5 else:
6 return value; 6 printf "choice: ", choice
7 } 7 value += choice
8 else 8 return value
o
10 printf ("choice: %d",
choice);
11 value += choice
12 return value;
13 }
14}

All data and programming components are objects since Python is an object oriented
language. However, there is no enclosing class and an object does not necessarily have
to belong to a certain class. A name is bound to an object what can be very helpful.

But misused with changeable object, it can cause serious side effects.

Python consists of a large standard library, which explains the “batteries included”
philosophy. Modules of the standard library can be extended. The library is espe-
cially customised for Internet applications, many standards and protocols like HTTP
are supported. Modules for creating interfaces to graphical components and databases
are included as well as a module for regular expressions. Most of Python’s modules
are platform independent and a lot of additional modules in many different areas are

available.

Python is a project requirement. Nevertheless is this choice no disadvantage compared
to other script languages like PERL due to the comprehensive standard library and the
possibility for object orientated programming. This script language is adequate for

small and large projects and is as powerful as any other script language.

23

3 Analysis

In this chapter it will be analysed if already existing technology can be used to fulfil
the requirements. It is examined which strategy is efficient to establish network com-
munication. Furthermore the analyses referring to the SRB log file, creating daemons
within UNIX environments and security are presented. Finally a database application

is introduced.

3.1 Existing Parsing Technologies

The purpose of log files is to keep track of events. Many software applications produce
line after line, page after page and it seems to be a never ending stream of data. To
examine those data can be difficult, not only because each log file may have a different
structure. Additional knowledge may be needed to interpret the data and not all the

data is important. But how to determine, which data is worth looking at?

This project demands a log file parser which is

* identifying any defined error

dynamically configurable

efficient to use

accessible and manageable with Python

* running on a UNIX system

free of use (if extra software package)

24

3 Analysis 3.2 Communication Technologies

Internet research resulted that many different log parser exists. A lot of them are not
freely available or written for a Microsoft Windows environment like the Microsoft
Log Parserﬂ Most of the parsers are standalone applications and a special interface is

needed to use it for this project. Often only a certain log file structures can be handled.

A very interesting module is the “pyparser” module for Python. The grammar can be
directly implemented into the Python code. The pyparsing module is an easy-to-use
Python module for constructing and executing basic text parsers [[14]. The module is
useful for evaluating user-definable expressions, processing custom application lan-
guage commands, or extracting data from formatted reports [14]. Unfortunately, the
pyparsing library requests Python Version 2.3.2 or higher, but this project is developed
with Python Version 2.2.3.

Another approach is the use of parsing generators. A parser generator is a tool that
creates a parser based on a certain grammar. The generated parser can also contain
the source code which is executed if the defined rules apply. In the Python world a
few parser generator exist such as the “Toy Parser Generator’ﬂ or the “Yappy’ﬂ To be
able to handle the parser generator a grammar to decribe the parser has to be learned.
Usually this grammar is very complex, since every possible pattern can be defined.
Further, additional software packages might be involved.

Instead of trying to adjust existing software solutions the decision was made to develop
an own parsing module. Only one text file has to be parsed. The requirements on
the parser are not that demanding and the parser could be held small and easy. This
solution also does not require additional modules. The parsing could be combined

with the creation of an XML file which contains the parsing results.

3.2 Communication Technologies

The communication for the required client server application is done with the network
protocol suite TCP/IP since it is the state-of-the-art. The following section are possi-

bilities to communicate through the network using TCP/IP.

'Microsoft Log Parser - http://www.logparser.com
2Toy Parser Generator - http://christophe.delord.free.fr/en/tpg
3Yappy - http://www.ncc.up.pt/fado/Yappy

25

3 Analysis 3.2 Communication Technologies

1. Sockets
Sockets are the basis for each communication through the network and can be
described as communication end points between two programs, which are com-
municating through the network. Sockets are part of the operating system and
can be acquired by applications. The operating system is responsible for man-

aging the sockets.

2. Remote Procedure Call
A Remote Procedure Call (RPC) is a mechanism which gives the possibility to
execute procedures on remote systems across a network. This technique is often
used in client server applications. Usually, the server provides certain proce-
dures. The client sends a RPC request to the server and invokes the execution
of this function on the server side. The server sends the return value of the pro-
cedure back to the client. Due to operation system independency the data which
is exchanged between client and server gets converted. This process is called
marshalling. In case of RPC the data gets converted to the External Data Rep-
resentation (XDR) format by the sender. The receiver converts the data back

depending on the operation system.

3. Common Object Request Broker Architecture
The Common Object Request Broker Architecture (CORBA) is an object ori-
ented middleware. Within CORBA are protocols and services defined which
facilitate the creation of distributed applications in heterogeneous environments.
CORBA is language independent and uses a Interface Definition Language (IDL)
to create an interface description which is translated into the target language such

as Java or C++.

The client calls a stub code as a local connecting point. A stub is piece of code,
which stands for another code which in this case is situated on another system.
The stub forwards the data to a Object Request Broker (ORB). The ORB sends
the data then to the ORB on the remote system. On this system a skeleton is
called. A skeleton is a piece of code as well. In this case the skeleton is doing

the mashalling. The stub and skeleton can be generated by an IDL compiler.

4. Remote Method Invocation

Remote Method Invocation (RMI) is basically a proprietary Java RPC. The client

26

3 Analysis 3.3 Daemon

calls a remote Java object. This object can be located in a virtual machine. As

for RPC, the procedure calls are handled as a local procedure calls.

The requirement of using Python 2.2.3 limits the choices. Python provides a good sup-
port for RPC. There are several packages to implement RPC like the module SimpleXMLRPCServer
which is part of the standard library. The client server communication can be imple-
mented in a efficient way. Within the RPC package, sockets are used and the socket

implementation is stable and reliable.

3.3 Daemon

Applications of this project will be running in the background. Therefore those appli-
cations should be turned into a daemon process. A daemon is a process with special
characteristics. First of all, a daemon has as a parent process, the init-process, and
therefore the daemon is not attached to any terminal. A daemon has super user rights
and that is why the User Identification (Number) (UID) = 0.

To create a daemon in a UNIX environment certain rules and the following sequence

have to be respected:

1. fork
First of all, fork needs to be called. fork creates a new process whereas the
initiator of fork is called parent. The newly created process is the child and is
a copy of the parent. Parent and child have same user ID and working directory

as well as the same open files.

The parent process exits. By doing so, the terminal returns and new commands
can be entered. The child process inherits the process group ID, but also gets a

new process ID. The child process cannot be the process group leader.

2. setsid
Calling the command setsid creates a new session, that leads to:
* the process becomes session leader of the new session
* the process becomes process group leader of the new process group

* the process has no control terminal anymore

27

3 Analysis 3.4 SRB Log File

3. fork

This second fork is executed to prevent zombies. A zombie is orphaned process
table entry which occurs if a parent process is not waiting for the child to finish.
Usually, the parent waits for the child’s exit status, but in case the parent is not
waiting, this status is kept in the process table entry. By doing the second fork,
the immediate child exits. Therefore the grandchild becomes an orphan whereas
the init-process emerges as responsible for the clean up of the grandchild pro-
cess [13].

4. change directory
Sometimes the process inherits a directory which needs to be unmounted. Since
the daemon is still accessing the directory, unmount is not possible. Hence a

directory change might be useful.

5. umask
unmask set the file creation mask for a process. The file creation mask defines
which rights are not to assign to new file or directory. By executing umask it is

ensured that the child gets the correct access rights for its own files.

6. file descriptor

Finally all inherited and open file descriptors have to be closed.

3.4 SRB Log File

The SRB system writes only one log file. This log file is accessed by various processes.
The log file srbLog, located in the SRBInstall/data directory, logs all activities
of the current SRB server session. If a SRB server is started, the current content
of the srbLog gets transferred to srbLog.sav or in the latest version gzipped and
information of the new sessions are saved again in srbLog. At a certain configurable
interval a log file rotation is taking place. The current srbLog is gzipped and placed

into a separate directory. The log file name is changed to include a datestamp.

In this project, the interest lies on error messages. Through the investigation of log
files it seems that the SRB server errors have negative error numbers as normal system

errors have positive error numbers. As for the SRB server a pattern for some log entries

28

3 Analysis 3.4 SRB Log File

can be found. The example in Listing [3.1| represents the pattern of most SRB log file

entries.

LISTING 3.1: SRB Log File Entry

1 NOTICE:Oct 3 20:35:04: resolveContainer: mdasGetlnfo error for container testcont.
status = —3201

Surveying the log file entries leads to the conclusion that in general the log entries have

the following pattern:

<Type>: <Timestamp>: <Message>

where the type specifies the importance and can be

NOTICE

FATAL

DEBUG

WARN

The timestamp consists of

* no year but

short version of the month name (e.g. OCT), followed by

the day of the month as a decimal number, followed by

the time (hour:minute:second).

The message is a short description of the event that tool place and it can contain error
numbers. The SRB server system provides an error description file which contains the

negative error numbers, error names and sometimes a short error descriptions.

But there are also entries in the log file, which do not follow this pattern as shown in

Listung[3.2]

29

3 Analysis 3.5 OpenSSL

LI1STING 3.2: SRB Log File Entries

getAndQueHostName: gethostbyname error for mda—18.sdsc.edu ,errno = 22

2 LocalHostName: zebedee.local, localhost, 130.246.42.39, 192.168.0.2, 127.0.0.1,

® N kW

192.168.0.2, Port Num: 5544.

Local storage vault conf:

storSysType: O, vaultPath: /Users/hasan/work/SRB/ Vault

Local Zone :

ZoneName = AdilZ HostName = zebedee.local PortNum = 5544

Remote Zone :

findServerExec: found ”/Users/hasan/work/SRB/SRBInstall3.3.1/bin/./srbServer” using
argv [0]

For those messages no reliable pattern could be assigned.

The log file size depends on the frequency of log file rotation and on the frequency of

events between two rotation processes.

It was neither possible the talk to the developer of the SRB system about the creation
of the SRB log file nor to acquire a relevant system description. Thus, all the results
mentioned before are based on observing the SRB system and analysing existing SRB

log files as well as a result of discussing the subject with people at the CCLRC.

3.5 OpenSSL

As discussed in section [2.3] implementing all the mentioned security aspects is very
complex. The open source project OpenSSL is a way to utilise security features as
describted in section

OpenSSL consists of a cryptography library and an SSL toolkit and is a derived work
from SSLeay which was originally written by Eric A. Young and Tim J. Hudson in
1995 [16]. In December 1998 the first version of OpenSSL was realised. Nowadays
security is an important issue and the OpenSSL library is usually installed on UNIX

operating systems.

The SSL library provides the user with all versions of the SSL protocol. This also
includes the Version 1 of TLS. The cryptography library offers most common used
algorithms which are already mentioned in section [2.3] OpenSSL is a free SSL imple-

mentation and is executable on most platforms.

As an interface to the OpenSSL library there are two Python modules available.

30

3 Analysis 3.6 SQLite - A Light Database Engine

1. pyOpenSSL
PyOpenSSL is a Python wrapper and the package provides a high-level interface
to the functions in the OpenSSL library. It is freely available under the terms
of the GNU Lesser General Public License and requires Python Version 2.1 or
higher [17]. The current version is pyOpenSSL-0.6.

2. M2Crypto

M2Crypto is a crypto and SSL toolkit for Python and the current version M2Crypto-
0.13 requires Python Version 2.[1234], OpenSSL 0.9.7 and SWIG 1.3.2.[123].
SWIG is a software development tool. It is an interface compiler that connects
programs written in C and C++ with scripting languages such as Perl, Python,
or Ruby. It works by taking the declarations found in C/C++ header files and
using them to generate the wrapper code that scripting languages need to access
the underlying C/C++ code [18]].

M2Crypto consists of two layers. The lower layer uses SWIG to hook up the
OpenSSL C API functions, making these available as Python functions [19]. The

upper layer provides Pythonic object-oriented interfaces to the lower layer [19].

Both interfaces were investigated. For the M2Crypto module a good documentation
and some examples of use were given by the developer. Furthermore, the handling
was understandable and efficient. Therefore, the decision was made to use M2Crypto
instead of pyOpenSSL, because the documentation was insufficient and no examples

are available.

3.6 SQLite - A Light Database Engine

The project requires a database to store the parsing results. Many different types are
available on the market. For this project a database is required which is freely avail-
able, runs under UNIX and is accessible by Python. Databases such as PostgreSQL,
MySQL, and SQLite provides this. PostgreSQL and MySQL are complex database
systems with many features. Due to the complexity both database require a certain
knowledge to install and administrate the system. The opposite is SQLite. SQLite also
needs less resources than PostgreSQL and MySQL due to the smaller complexity.

31

3 Analysis 3.7 Graphical User Interface (GUI)

The parsing results contain only

* characters according to ISO/IEC 10646
* date

* timestamp

This are standard database attributes. Therefore a light database can be used. This
brings performance and configuration benefits. After examining the aforementioned
database engines the decision was made to use SQLite. The extensive features of
PostgreSQL and MySQL are not needed for this project.

SQLite is a small C library that implements a self-contained, embeddable, zero con-
figuration SQL database engine [20]. The transactions made are atomic, consistent,
isolated, and durable [20] and no administration is required. The database is stored in
a single file and it is suppose to be faster than any other common client/server database
engines for most common operations [20]. Furthermore, it implements most of the
SQL-92 standard. The database query language SQL (Structured Query Language) is
one of the most common used query languages. To be compatible with the Python
Version 2.2.3, the SQLite Version 2.8.16 is used.

To use the SQLite library an interface is needed. For this project pysqlite is used.
Pysqlite is a database interface for SQLite and is freely available. Due to compatibility

the version pysqlite 1.0.1 is used.

3.7 Graphical User Interface (GUI)

Although all the software, which is going to be developed, is controllable though a
console this project has a small graphical aspect. The parsing results should be rep-
resented as graphs, additionally these graphs have to be savable. The graphical user

interface should be self-explanatory within its handling.

The Python standard library offers the interface Tkinter to the Tk GUI toolkit and can
be used for this project. TK is an open source cross-platform widget toolkit, which
offers functionality for the development of a graphical user interface. The TK toolkit

is usually installed on UNIX operated system.

32

4 Design

In this chapter all design issues concerning the software development are presented and
explained. First a few general aspects are given. These ideas apply to all applications.
After that, ideas to each application are illustrated as well as class diagrams. Short
explanation to all member variables and function within the classes are also given.

This chapter also includes the software specifications.

4.1 General Aspects

All applications are written as a console application. That means, mainly parameters
are used to control the applications. The software is designed for administrators or
scientists which are using the SRB system. Consequently, basic knowledge and under-

standing towards handling a console application can be expected.

The software is written for a UNIX environment. To compile additional software a
C-compiler is required. The GNU Compiler Collection (GCC) is most common used

open source compiler and usually installed on UNIX operated systems.

According to the project description, two main applications are needed. First of all
a server, which is handling the log file parsing. Second, a client which collects the
parsing results from the server and is handling the storing and displaying of the parsed
data as well as the notification. The design of those two applications is based on the

client-server-architecture.

One server monitors one SRB system only. A client is collecting data from many

servers. This relationship is clarified in Figure [4.1]

33

4 Design 4.2 Server

G
Server — -
k)
/ Server —_— -
Client .

Tt
e T @@

FIGURE 4.1: Client-Server-Relation (1:n)

As decided in analysis (chapter [3)) the communication is done with an adjusted ver-
sion of the Python standard library module SimpleXMLRPCServer. The handling with
password is avoided due to efficiency. Therefore, authentication is done with certifi-
cates. Only SSLv3 is used. The used ports are freely configurable unless it is not a
port number below 1025 and above 50000. Ports from 0 to 1024 are usually reserved

for other services and an interference should be avoided.

Once the server is started, it keeps track of all log file changes after that. But to
integrate older log files which are stored as compressed files (*.gz) too, a separate tool
is developed. This integration is done only once, therefore this process is sourced out

to another tool. The additional tool uses the same parsing technology as the server.

In the adjacent class diagrams often a utils_xxx class can be found. This is not a
class, it represents a script which contains functions, which are needed by all the other
classes. The class diagrams are only short versions, full versions are available in the

appendix in chapter B]

4.2 Server

Figure [4.2] shows the basic client-server design approach.

34

4 Design 4.2 Server

*ini *.cfg *.ini *.cfg
Client Server
Pre-
processor
Request
Handler
XML Processor
Manager Parsing
Thread | | Thread Control (i
L
Parser
— |Manager| |Parsing
Thread Thread

Database

network

FIGURE 4.2: Basic Client-Server Design

The server’s control unit is responsible for verifying the user input. Furthermore, this
unit starts the parser with the right configuration and accepts incoming requests. The
request are passed on the request handler. The parser works independently controlled
by the manager thread. The parsing thread is doing the actual SRB log file handling.
The parsing results are saved in an XML structured file, which also is accessed by the

request handler.

The server has its own configuration file to gain the required flexibility. The config-
uration file structure is similar to Microsoft Windows INI files (*.ini). The Python
standard library module ConfigParser is able to handle this file structure. The file
structure contains section headers followed by a name including a value. Comments

are applicably by using “#” or ;" characters. With the configuration file it is possible

to configure

¢ the location of

— server certificate file
— certificate authority file
— SRB log file

35

4 Design 4.2 Server

— keyword file

* the parsing interval time

the port

the network interface (e.g. eth0)

e error numbers, which are to be ignored

The server is able to parse and handle incoming requests at the same time. This is
realised with threads. By using threads it has to be ensured that several threads are not
requiring the same resources at the same time. Thread synchronisation is done with
mutex mechanisms. If such mechanisms are used, a system of deadlock avoidance has
to be established.

The parsing module is analysing the log file by reading the SRB log file line by line.
The extracted line is examined according to a keyword list. This list is defined in an
additional file and the exact approach is explained in chapter[5 If the line is as wanted

identified the following values are extracted:

date
e time
e error number

* error string

line number

The date and time is extracted from the SRB log file line. If no date or time is available,
they are taken from the log file properties. The error number is compared with the
given list of “ignored error” numbers. In case the number should be ignored, the
parser goes on with the next line in the log file. With “error string” the whole log file
entry line is referred. Line number is the actual line number in the SRB log file. The
values are saved in an XML file before the parser moves on to the next line. If no error

[

number is available, the character is inserted instead.

If the parser is writing the XML file, the client has to wait until the parsing process is
finished and vice versa. This is controlled with a mutex class where the same object of

this class is passed on to each thread.

36

4 Design 4.2 Server

The communication part in the SimpleXMLRPCServer is exchanged to a secure server,

provided by the M2Crypto package (introduced in chapter 3)).

If an applications is trying to connect to the server, the request gets accepted if the
SSL handshake is successfully done. The accepted connection is then passed on to
a thread (MyClientThread). If the connected application is satisfied the thread dies

automatically.

The user has the option to start the server as a daemon. The daemonisation process is
implemented as described in the analysis (chapter [3)). Furthermore, the user is allowed
to observe the work of the server by activating the verbose mode. If the verbose mode
is activated and the server is running as a daemon, the output is written into a log file
which is cleared each time the server is restarted. The configuration file is handed over

as a parameter, too. Table shows the parameter for the server.

TABLE 4.1: Server Parameters

Parameter Explanation

-h or —help print help

-c or —config defines configuration file

-v or —verbose activates printing of messages [debug option]
-d or —daemon daemonise the server

If the option -h or —-help is used, all other given parameters are disabled.

4.2.1 Server Class Diagram Design

Figure 4.3[depicts the class diagram for the server.

37

4 Design

4.2 Server

[M2Crypto.SsL| LA
verbose

SimpleXMLRPCServer |
[]
L 1

S5L.Server
[|

SimpleSSLXMLRPCServer m
funcs request
!ogRequests client

instance e “serv

_vgrbose Nt
__init__{) run()

handle_request()

My_SSL_Server
_server_certificate

RPC

_verbose
_client

_share
_config_file
_interval
_keyword_path
_keyword_name
_xmi_file_path

__init__[})
rpc_check_availability()
rpc_stop_server()
rpc_disable_rpc_calls()
rpc_enable_rpc_calls()
rpc_get_my_xml_file()
rpc_status()
rpc_interval_status()
rpc_get_file_list()
rpc_update_configuration()
rpc_update_keyword_file()
_parse_directory()

thread.Lock _parsing_thread_id
_lacked

__imit__[}
start_server()
init_context()

WeorkingServer
_server_certificate
_server_certificate_path
_Server_ca

establish_connection()
register_functions()
get_ip_address()
run_server()

Mutex

client
parsing

__imit__()
set_wariable_parsing()
set_wariable_client()

FIGURE 4.3: Server Class Diagram

LogFileParser

_client_log_file
_client_log_file_fd
_first_line
_last_byte_number
_line_number
_verbose
_ignore_error
_keywords
_logfile_path

server_ca_path MyParserThread
¥ 3 id
_srb_log |]
_srb_log_path _keywordfile
warkingpath _keywordfile_time
_interval _configfile
_port _configfile_time
:serverobject _verbose)
sery _shared_obj
verbose _interval
:keyword_name _::—I;er
keyword_path lee | Pars

7 _:mﬁw:ile_pa _logfilepath
_:ml_file path _log_file_name
Tshare list
o _gz direct
_keyword -9z
_ignaore_errar __init__(}

z_path run(}

e stap_thread()
_configfile .
ip gunzip()
_rpc obj parse_directory()
i) _refresh_configuration()

_refresh_keywords()

__init__()
set_first_lines()
test_first_lines()

reset()
find_size_last_message_tag()
end_entry()
_fetch_first_lines()
_get_first_lines()
start_entry()
write_entry()
update_keywaords()
update_ignore_error()
_test keywords()
_extract_time()
_extract_error_number(}
analyse_logfile()

utils_server

delete_file()
list_to_string()
find()
LoadConfig()
check_ip()
get_keywords()
remaove_item()
usage_exit()

The server has a manager class WorkingServer which consists of

* mutex object(Mutex)

e RPC functions (RPC)

4 Design

4.2 Server

* aparsing thread (MyParserThread)

* a secure server (My_SSL_Server)

and is initialising all necessary objects. The required data are hold in the member

variables described in Table

TABLE 4.2: Member Variables Class WorkingServer

Variable
_ip
_server_certificate

_server_certificate_path
_server_ca
_server_ca-path

_srb_log
_srb_log_path

_workingpath

_interval

_port
_serverobject

_Serv

_verbose

_keyword_name
_keyword_path
xml_file

xml_file_path

Type

STRING
STRING
STRING

STRING

STRING

STRING
STRING

STRING
INTEGER

INTEGER

MY _SSL _Server
SIMPLESSL-
XMLRPC-
SERVER
INTEGER

STRING
STRING
STRING
STRING

Explanation

IP address of network interface
name of the server certificate
location (path) of the server
certificate

name of certificate authority
file

location (path) of the certificate
authority file

name of the SRB log file
location (path) of the SRB log
file

name of working directory
parsing interval period in min-
utes

port number

object of class My _SSL_Server
object of
SimpleSSLXMLRPCServer

class

defines printing of debug mes-
sages

name of keyword file

location (path) of keyword file
name of XML file

location (path) of XML file

Continued on next page

39

4 Design

4.2 Server

Table 4.2 Member Variables - continued from previous page

Variable Type
_share MUTEX
_keyword STRING
_ignore_error INTEGER
—gz_path STRING
_configfile STRING
_rpc_obj RPC

Explanation

object of class Mutex

array of the defined keywords
array of error numbers which
are to be ignored

location (path) of gz files
name of configuration file
object of class RPC

The constructor __init__ verifies the user input and initialises most of the member

variables. The function establish_connection starts the server and afterwards the

manager thread MyParserThread. register_function registers all RPC function to

be able to use them later. With the function get_ip_address the IP address is extracted

from the given network interface. Finally the function run_server accepts incoming

requests.

The MyParserThread class is handling the parsing and is running as a thread. This

member variables are displayed in Table

TABLE 4.3: Member Variables Class MyParserThread

Variable Type

_id INTEGER
_keyword_file STRING
_keyword_file_time INTEGER
_configfile STRING
_configfile_time STRING
_verbose INTEGER
_shared_object MUTEX

Explanation

thread identification number
name of keyword file

last modified time of keyword
file

name of configuration file

last modified time of configura-
tion file

defines printing of debug mes-
sages

object of class Mutex

Continued on next page

40

4 Design 4.2 Server

Table 4.3 Member Variables - continued from previous page

Variable Type Explanation

_interval INTEGER parsing interval period in min-
utes

_stop INTEGER define stopping of thread

_parser LOGFILE- object of class LogFileParser

PARSER

_log_file_name STRING name of the SRB log file

_logfilepath STRING location (path) of the SRB log
file

_list STRING array to hold file names

_gz_direct STRING location (path) of the gz files

The constructor __init__ initialises the member variables. The thread can be termi-
nated manually by using the function stop_thread. The function gunzip is used
to uncompress the gzipped files. With parse_directory the newest gz files is de-
termined. The determination is based on the last modified time taken from the file
property. _refresh_configuration and _refresh_keywords are used to update the
member variables which are involved in the parsing process. These function are nec-
essary due to the possibility to change the configuration and keyword file remotely.
Within run the periodically parsing is organised. First it is checked if the configu-
ration file and keyword file were modified. In that case, the member variables get
updated. Then the first lines of log file are analysed to check if a log file rotation took
place. In the case of log file rotation the gz file is determined and the last log file entries

are parsed. Afterwards the log file parsing for the current log file is initiated.

The class LogFileParser is concerned with the log file parsing. The member vari-
ables are described in Table 4.4]

TABLE 4.4: Member Variables Class LogFileParser

Variable Type Explanation
_client_log_file STRING name of XML file

Continued on next page

41

4 Design 4.2 Server

Table 4.4 Member Variables - continued from previous page

Variable Type Explanation

_client_log_file_fd INTEGER file descriptor of XML file

_first_line STRING first lines of SRB log file

_last_byte_number INTEGER save last byte number which
was parsed

_line_number INTEGER last line number which was
parsed

_verbose INTEGER defines printing of debug mes-
sages

_ignore_error INTEGER error which are to be ignored

_keywords STRING array with keywords

_logfilepath STRING location (path) of the SRB log
file

The constructor __init__initialises the member variables. The function set_first_lines
save the first fifteen lines of the log file. _fetch_first_lines only reads the first fif-
teen lines of the log file. With the function test_first_lines it is determined if a
log file rotation took place. get _first_lines returns the content of the member vari-
able _first_line. The function reset reset the member variables _1ine_number and
_last_byte_number after a log file. To be able to delete the last tag within the XML
file the size in bytes is determined by the function find_size_last_message_tag. The
functions start_entry, end_entry, and write_entry are used to write the XML file.
The corresponding member variable is updated with update_keywords and update_ignore_errors,
respectively. The recursive function _test_keywords determines if a log file line is
taken or not taken. From the log file line the time is extracted with _extract_time
and the error number is determined with _extract_error_number. The most impor-

tant function is analyse_logfile. The program flow chart of the most important loop
is displayed in Figure

42

4 Design 4.2 Server

A4

read line

no

increment
line_number

yes take last modified

time from file
time pattern
matched ?

property
no

extract time

extraction
positiv ?

yes

A

yes

end of file ?

extract error
yes number

no

go one character
back in log file

1

ignore error ?

yes write XML file

FIGURE 4.4: Flow Chart analyse_logfile

The parser read the log file line by line. If the end of the file is reached the parsing
process is terminated as well as if problem occurs writing the XML file, e.g. if no hard
disk space is available anymore. From the log file line the time is extracted. If this is

not possible the log file properties are taken into account.

All the necessary RPC functions are centralised in the class RPC. Table d.5| presents the

member variables of the RPC class.

43

4 Design 4.2 Server

TABLE 4.5: Member Variables Class RPC

Variable Type Explanation

_verbose INTEGER defines printing of debug mes-
sages

_client BOOL indicates RPC status (enabled/
disabled)

_share MUTEX object of class Mutex

config file STRING name of configuration file

_interval INTEGER parsing interval time

_keyword_path STRING location (path) of keyword file

_keyword_name STRING name of keyword file

xml_file path STRING location (path) of XML file

The constructor __init__initialises the member variables. The function rpc_stop_server
executes the bash (bourne again shell) script to shut down the server. A detailed de-
scription about this script can be found in chapter [5.4] rpc_disable_rpc_calls and
rpc_enable _rpc_calls are used to modify the member variable _client whereas
rpc_status only returns to current value of the variable. The current parsing inter-
val time can be discovered with the function rpc_interval_status. If the server
is parsing the log file, the client has to wait until the server is finished. With the
function rpc_check_availability it is possible to check if the server has finished
the parsing process. rpc_get_file_list in conjunction with _parse_directory re-
turns a list of all files, which are available for the client to fetch. Finally, the func-
tion rpc_get_my_xml_file delivers the XML file. It is possible the modify remotely
the configuration and keyword file. The functions rpc_update_configuration and
rpc_update_keyword_file enable this. Both functions work after the same structure.
Different modes such as add, delete, or information are possible. According to the
mode the corresponding file is modified or the required information gets extracted.
During the file modification part of the file gets deleted and after exchanging or delet-

ing the required value, rewritten.

The class SimpleSSLXMLRPCServer is derived from SimpleXMLRPCServer which is
part of Python’s standard library and SSL. Server which is provided by the M2Crypto

44

4 Design 4.2 Server

package. This class implements the basic server. Table 4.6 shows the member vari-

ables.
TABLE 4.6: Member Variables Class SimpleSSLXMLRPCServer

Variable Type Explanation

_verbose INTEGER defines printing of debug mes-
sages

_funcs STRING dictionary for the RPC func-
tions

_logRequests INTEGER defines if requests should be
logged

_instance undetermined the class allows to install in-

stances, this is not used for this
project and therefore, it is set to

“None”

The constructor __init__initialises the member variables and initialises the secure SSL
server. With handle_request the original function of BaseServer is overwritten. For

a better understanding parts of the derivation path can be illustrated as following:

BaseServer

4

SocketServer.TCPServer

4

SimpleXMLRPCServer

4

SimpleSSLXMLRPCServer

With the new function handle_request every incoming request is passed on to an
object of MyClientThread. This enables multithreading. A more detailed description
can be found in chapter|[5.2]

MyClientThread is derived from threading. Thread. Table[d.7|displays the member

variables.

45

4 Design 4.2 Server

TABLE 4.7: Member Variables Class MyClientThread

Variable Type Explanation
_request SOCKET accepted request
_client STRING IP address from connecting
client
_serv SIMPLESSL- object of the current running
XMLRPC- SimpleSSLXMLRPCServer
SERVER

The constructor __init__ initialises the member variables. The redefinition of the run
function executes the in class BaseServer defined functions process_request and

close_request.

The class My_SSL_Server implements the final server. The member variable hold
the server certificate file name (STRING), certificate authority file name (STRING)
and verbose mode (INTEGER). The constructor __init__ initialises the member vari-
ables. Within start_server the server get initialised and finally started. The function

init_context provides the necessary SSL context.

The Mutex class handles the thread synchronisation. Table 4.8|illustrates the member

variables.
TABLE 4.8: Member Variables Class Mutex
Variable Type Explanation
_parsing INTEGER indicates if server is busy
_client INTEGER indicates if client is busy
_parsing_thread_id INTEGER identification number of pars-
ing thread
_locked THREADING.LC object of threading.Lock

The constructor __init__initialises the member variables. The function set _variable_parsing

46

4 Design 4.3 Client

ensures the work of the parsing thread and the function set variable _client han-
dles the synchronisation of the client threads. A more detailed description about the

mutex mechanism can be found in chapter 5.6

4.3 Client

The basic design of the client as illustrated in Figure 4.2 has a preprocessor for veri-
fying the input. Afterwards the XML processor gets started and works independently.
The processor is controlled by the manager thread. The actual connecting to the server
is done by the parsing thread, which also takes care of processing the XML file (storing
the preprocessed information in a database) and email notification.

The client is working with a configuration file in the same way the server does. Fol-

lowing issues are configurable

¢ the location and name of the database
¢ the location of

— error description file
— server certificate file

— certificate authority file
» the XML fetching interval time
* the server IP in connection with the port
e SMTP mail server issues (server address, user name, sender’s name)
* mail recipient issues (email address, location of keyword list file, error to be

ignored)

The client fetches the prepared XML file from the server. Is the file successfully trans-
ferred to the client, the XML file on the server is deleted to avoid unnecessary memory
usage. Several servers can be checked at the same time. This is realised with threads.
Thread synchronisation is ensured with a mutex class object, which is passed on to
each thread.

A thread connects with a dedicated server and checks if an XML file is available. If this

is the case, the file is transferred to the client and saved temporarily on local disk. If the

47

4 Design 4.3 Client

database is accessible, the XML file is parsed and XML entry by XML entry is stored
in the database. The standard error numbers are provided by the error description file.
The XML entry can provide such an error number. If no error number is provided
by the XML file, the error message gets assigned the error number 999999. Any new
error number is automatically inserted in the database. Double entries are avoided by
checking the database beforehand if the entry already exists. Double entries can occur
if the final XML processing or XML fetching process is interrupted and the client deals
a second time with the same file.

At the same time a temporary mail content file is written. In the configuration file recip-
ients can be defined, who receive a mail notification. The contents of the notification
can be modified with additional keywords as well as with additional error numbers.
The keywords, written in a keyword file, contain all those keywords, where the recip-
ient is not interested in notification. Furthermore, it is possible to define certain error
numbers, which are to be ignored and no notification is sent. All the content of the
other XML entries are added to the mail content file. After the XML file was success-
fully parsed, the temporary XML file gets deleted. This is followed by creating a mail
using the mail content file and sending the mail via SMTP. For that the module smplib
from Python standard library is used. One mail is send for each server monitored and

each XML file fetched. The temporary mail content file is deleted afterwards.

For the authentication at the SMTP mail server a password is needed. This password
can not be saved in any configuration file due to security issues. Also, to save an
encrypted password locally is not an option, since the Python scripts (source code) are
stored as plain text and easily accessible. Therefore, the decryption algorithm can be
seen. The only possibility to gain a certain degree of security is to enter the password
during the start process of the client. The password is then stored in the virtual memory
for the time the application is running. For that the console echo is turned off, the
password can be entered without appearing as console output. Afterwards the console

echo is turned on again.
Each client has its own database, which gets initialised during the starting process.

The client can be run as a daemon. The application is daemonised as analysed in
chapter 3l The configuration file is passed on as a parameter. Table defines the
parameter for the client. The work of the client can be monitored as console output. If

the client is running as a daemon, the output is redirected into a log file. The log file is

48

4 Design 4.3 Client

cleared each time the client is started.

TABLE 4.9: Client Parameters

Parameter Explanation

-h or —help print help

-c or —config defines configuration file

-v or —verbose activates printing of messages [debug option]
-p or —smtp_password activates mail notification sending

-d or —daemon daemonize the client

4.3.1 Client Class Diagram Design

The class diagram of the client application is shown in Figure [4.5]

The manager class MyClient is verifying the user input and initialising the application.
Table displays the member variables.

TABLE 4.10: Member Variables Class MyClient

Variable Type Explanation

_verbose INTEGER defines printing of debug mes-
sages

_client_certificate STRING name of the client certificate

_client_certificate_path STRING location (path) of the client cer-
tificate

_client_ca STRING name of certificate authority
file

_client_ca_path STRING location (path) of the certificate
authority file

_error_description_name STRING name of the error description
file

Continued on next page

49

4 Design 4.3 Client

Table 4.10 Member Variables - continued from previous page

Variable Type Explanation

_error_description_path STRING location (path) of the error de-
scription file

_workingpath STRING name of working directory

_database_name STRING name of the database

_database_path STRING location (path) of the database

_interval INTEGER parsing interval period in min-
utes

_project STRING name of SRB project

_serverlist STRING array of server which are mon-
itored

_share MUTEX object of class Mutex

_smtp_server STRING name of SMTP server

_smtp_pass STRING SMTP password

_smtp_from STRING email sender identification

_smtp_user STRING SMTP user name

mail_address STRING notification email addresses

mail_ignore_error STRING array of keywords

_db MYDATABASE object of class MyDatabase

_workerthread WORKER- object of class WorkerThread

THREAD

The constructor __init__initialises the member variables. This function initialise_
database is initialising the database. get_serverlist returns the content of the
member variable _serverlist. With fetch_error_messages the workerthread is
initialised and started. _get_keywords extracts keywords from a given file. The re-
cursive function _remove_item deletes an item from a given list and is mainly used to

delete comments which might be in a keyword file.

50

4 Design 4.3 Client

MyContentHandler
verbose
E— _my_mail__ignore_grror
_mail_obj Mail
_ip _verbose
_db_access _mail_address
Mutex _db _smtp_server
db_locked _searchTerm _smtp_pass
lacked _date _smtp_from
writing _date_flag _smtp_user
the_thread _time _mail_name
:,iﬂﬁ,,(} _time_flag __imit__(}
set_variable(}) _error_number create_content()
reset_variable() —error_number_flag add()
lack() _error_string send_mail(}
release() _errar_string_flag delete_content()
_linenumber
_linenumber_flag
__init__(}
startElement()
MyClient characters(})
_wverbase endElement()
_woarkingpath set_ip()
_database_name _test_keywords()
_database_path _reset()
_error_description_name _insert{}

_error_description_path
_client_certificate
_client_certificate_path

_client_ca
client_ca_path
- _ca-pa ClientThread
_project
= verbose
_interval -
. _interval
_serverlist
share
_share =
_address
smtp_server
-) e
e db_access [M3Crypto.maxmirpeiib.S |
smtp_from — rypto.m2xmirpclib.Server
- b _client_certificate = [|
_smtp_user ; |

mmail_address _client_certificate_path

_mail_ignare_error _z:::::_z path
7::rkerthr€ad _xml_file_parser
i el _smtp_password
__init__ _mail_obj
initialise_database() my_handler .//__
get_serverlist() rile_list
fetch_error_messages() _sbo; thread
_get_keywords() it
remave_item() ranl)
_ _ runi}
create_ctx()
_wait()

_connect_to_server()

MyDatabase o
_wverbose threading.Thread
_db_access WorkerThread e —.
_database_path _verbose
_oonnect _share
__imit__(} _db_access
get_access_cursor() _interval
get_database_path() _serverlist
execute_sgl() _client_certificate
’ _client_certificate_path
_client_ca
_client_ca_path

_mail_address

m _mail_ignore_error

—

1 _smtp_server
_smtp_pass
_smtp_from utils_client
i NPy LoadConfia()
st check_ip()
—-Init_() usage_exit()
runQ) get_password()

_parse_directory(}

FIGURE 4.5: Client Class Diagram

The class WorkerThread is responsible for starting the threads which are connect-

51

4 Design

4.3 Client

ing to the server and is derived from threading.Thread. The member variables are

presented in Table

TABLE 4.11: Member Variables Class WorkerThread

Variable

_verbose

_share

_interval

_client_ca

_client_ca_path

_client_certificate

_client_certificate_path

_serverlist

_smtp_server
_smtp_pass
_smtp_from
_smtp-user
mail_ignore_error
mail_address
_db_access

_list

Type
INTEGER

MUTEX
INTEGER

STRING

STRING

STRING
STRING

STRING

STRING
STRING
STRING
STRING
STRING
STRING
MYDATABASE
STRING

Explanation

defines printing of debug mes-
sages

object of class Mutex

parsing interval period in min-
utes

name of certificate authority
file

location (path) of the certificate
authority file

name of the client certificate
location (path) of the client cer-
tificate

array of server which are mon-
itored

name of SMTP server

SMTP password

email sender identification
SMTP user name

array of keywords

notification email addresses
object of class MyDatabase

array to hold a file names

The constructor __init__ initialises the member variables. The function _parse_di-

rectory is used with the function os.path.walk. This function “walks” through a

given directory and considers all srbLOG*.gz files. The name and last modified time

52

4 Design

4.3 Client

are saved in a two dimensional array. Finally, the function run initiates the periodically

fetching and processing of the XML files.

ClientThread derived from threading.Thread as well is handling the actual XML

fetching and processing in connection with Mail. Table 4.12] displays the member

variables.

TABLE 4.12: Member Variables Class ClientThread

Variable

_verbose

_share

_interval

_client_ca

_client_ca_path

_client_certificate

_client_certificate_path

_address

_port
_smtp_password
mail_obj
_smtp_user
_db_access

_my_handler

_stop_thread

_file_list

Type
INTEGER

MUTEX
INTEGER

STRING

STRING

STRING
STRING

STRING

INTEGER
STRING

MAIL

STRING
MYDATABASE
MYCONTENT-
HANDLER
BOOL

STRING

Explanation

defines printing of debug mes-
sages

object of class Mutex

parsing interval period in min-
utes

name of certificate authority
file

location (path) of the certificate
authority file

name of the client certificate
location (path) of the client cer-
tificate

IP address of server which are
monitored

port number of server

SMTP password

object of class Mail

SMTP user name

object of class MyDatabase
object of
MyContentHandler

class

indicates manually terminating
of thread

array to hold a file names

Continued on next page

53

4 Design 4.3 Client

Table 4.12 Member Variables - continued from previous page

Variable Type Explanation
xml_file parser XML.SAX. object of class
MAKE_PARSER xml.sax.make_parser

The constructor __init__ initialises the member variables. The XML parser require a
content handler which is provided by MyContentHandler. The necessary SSL context
to connect with the server is supplied by create_ctx. _connect_to_server estab-
lishes the secure connection to the server. While the server is parsing the SRB log file,
the function _wait checks for a defined time if the XML file can be fetched. Within

run the whole XML file fetching and processing procedure is executed.

The fetching consists of three parts. Figure illustrates the top level flow chart
diagram as an overview of part I to III. After the connection is successfully established
(part 1) the client determines which files need to be fetched (part II). If XML files on

the server side available the actual fetching takes place (part I1I).

All these parts contain routines for following scenarios

* RPC is disabled
* server is busy

e server is not reachable

54

4 Design

4.3 Client

file list
empty ?

connect to server

Partl <

connection

successful 2

AN

try to fetch file list |«

decrease waiting
time

wait time ==

Partil <

RPC disabled

no
files available

get file list

v

hE

—» trytofetchfile |«

decrease waiting
time

Partil <

RPC disabled

wait time ==

determine
temporary
XML files name
and save file

another file
to fetch ?

no

Part IV

FIGURE 4.6: Flow Chart ClientThread - run() PartI-III

55

4 Design 4.3 Client

Now the XML processing is executed (part IV). The temporary saved files contains the

IP address from producing server. Figure shows a top level flow chart diagram of

part I'V.
— A

prepare content
handler

v

»

open file

decrease wait time

wait time == 0
?

no

start parser and
insert content in
database

v

send mail if
required

!

close open files
and delete

temporary XML
file and mail
content file

yes A "
another XML file to

process ?

Partlv. <

FIGURE 4.7: Flow Chart ClientThread - run() Part IV

First the content handler is prepared. Then the parser is started and if required the
mail is sent. Completed is the procedure with the deleting of all temporary files. The
function can also be used to process locally saved XML files only, if a list of files is

passed on as a parameter already.

The XML parser module has to know how to manage the content of the XML file.
This is done with MyContentHandler which is derived from xml.sax.handler.
ContentHandler. Table presents the member variables.

56

4 Design 4.3 Client

TABLE 4.13: Member Variables Class MyContentHandler

Variable Type Explanation

_verbose INTEGER defines printing of debug mes-
sages

my mail- _ignore_error STRING array of keywords

mail_obj MAIL object of class Mail

_ip STRING server IP address

_db_access SQLITE database access cursor

_db MYDATABASE object of class MyDatabase

_searchTerm STRING tag which needs to be identified

_date STRING XML content for date

_date_flag INTEGER indicates if date content is
found

_time STRING XML content for time

_time_flag INTEGER indicates if time content is
found

_error_number STRING XML content for error number

_error_number_flag INTEGER indicates if error number con-

tent is found

_error_string STRING XML content for error string

_error_sting_flag INTEGER indicates if error string content
is found

_linenumber STRING XML content for line number

_linenumber_flag INTEGER indicates if line number content
is found

The constructor __init__initialises the member variables. The function startElement
defines the XML tag which is handled. If a tag is matched, the function characters
assigns the content to the appropriate member variable. If all flags are set, endElement
initialises the database update and mail content writing. The actual writing into the
database is executed with _insert where also all necessary verifications takes place,

e.g. double entry check. For the mail content creating the recursive function _test _keywords

57

4 Design

4.3 Client

determines the actual mail content. The function _reset is used to reset member vari-

ables. The variable _ip can be modified with set_ip.

MyDatabase handles database issues like initialising and updating as well as providing

a database access cursor. The member variable are presented in Table d.14]

TABLE 4.14: Member Variables Class MyDatabase

Variable

_verbose

_db_access
_database_path

_connect

Type
INTEGER

SQLITE
STRING
SQLITE

Explanation

defines printing of debug mes-
sages

database access cursor
location (path) of database file

object of class sqlite

The constructor __init__ initialises the member variables and creates or updates the

database. Any database corruption is also detected here. Figure 4.8| gives an overview

about the constructor structure.

database file
existing ?

required tables
existing ?

update database,

create database

tables

A

insert basic

database data end

notify user

if new data

print statistik

FIGURE 4.8: Flow Chart Constructor MyDatabase

58

4 Design 4.3 Client

The database is created and the basic data such as error from the error number file,
if no database file exists. If a database file is detected, each table is verified. Every
irregularity is reported. Finally a statistic about the current database state is printed.
Any new data is inserted automatically, e.g. new server IP addresses. The functions
get_access_cursor and get _database_path return the content of the corresponding

member variable. Finally, the execute_sqgl executes a SQL command.

Instruments to send a mail are provided by the class Mail. Table {4.15| diplays the

member variable.

TABLE 4.15: Member Variables Class Mail

Variable Type Explanation

_verbose INTEGER defines printing of debug mes-
sages

mail_access STRING receiver address

_smtp_server STRING SMTP server address

_smtp_pass STRING SMTP password

_smtp_from STRING email sender identification

_smtp_user STRING SMTP user name

mail_name STRING name of temporary mail con-
tent file

The constructor __init__ initialises the member variables. With create_content the
temporary mail content file is created. The function add is used to add information to
the content file. The content file is deleted with delete_content. The mail is sent

with the function semd mail using the smtplib.SMTP from Python’s standard library.

Mutex is used for thread synchronisation. Table .16 present the member variables.

59

4 Design 4.4 Database Design

TABLE 4.16: Member Variables Class Mutex

Variable Type Explanation
writing INTEGER indicates a thread is writing the
database
_the_thread INTEGER identification number of writ-
ing thread
_db_locked THREADING. object of threading.Lock for
LOCK database synchronisation
_locked THREADING. object of threading.Lock for
LOCK any other occurring critical
section

The constructor __init__initialises the member variables. The function set_variable
set the member variable _writing and the function rest_variable resets this vari-

able. With lock and release the lock _1ocked can be operated.

4.4 Database Design

The values of the XML file as defined in section 4.2 have to be stored in a database.
Furthermore, all the existing error codes as well as the server which are monitored

have to be saved.

The design of a database can be presented as an Entity Relationship Model (ERM).
An ERM is a conceptual data model to view the reality as entities and relationships
between entities. An entity is the data object, which contains the data to be stored. It
consists of attributes and is analogue to the table in the relational database. Attributes
describe the entity. Each attribute has a domain. The domain defines all possible values
an attribute can have. Relationships between entities can be classified in many ways.

Cardinality is one possibility and following relations can be committed:

* 1:1
one instance of entity A is associated with only one instance of entity B

60

4 Design 4.4 Database Design

* I:n
one instance of entity A is associated with zero, one, or many instances of entity
B

° n:m
one instance of entity A is associated with zero, one, or many instances of entity
B and one instance of entity B is associated with zero, one, or many instances of
entity A

The relations can be presented within the model using symbols as illustrated in Figure

FIGURE 4.9: Cardinality within ERM

Figure 4.10| shows an extended Entity Relationship Model for the required database.

The extended ERM defines precisely the range of possible values (min, max).

1,1 1% 0,*
host ()(n ge: ()
. (17
h_ip_address
has
(1"

project error

FIGURE 4.10: Entity Relationship Model

61

4 Design 4.4 Database Design

Based on the ERM, Figure {4.T1]illustrates the design of the database.

Server Message Error

messages v
l@ m_id: INTEGER
error v
host v @ host_h_id: INTEGER (FK) |
@ e_id: INT(10;
? h_id: INTEGER la error_e_id: INT(10) (FK) 9 - (1)
B °®) ¢ e_number: INT(10)
¢ h_ip_address: CHAR(15) ¢ m_date: DATE
. {3 e_name: CHAR(200)
¢ h_hostname: CHAR(30) & m_time: TIME
) s e_decription: CHAR(400)
{3 M_error_string: CHAR(400)
L £ m_line_number: INT(7)

host_project v
l@ host_h_id: INTEGER (FK)
l@ project_p_id: INTEGER (FK)

!

project v
@ P_id: INTEGER
£ P_name: CHAR(100)

FIGURE 4.11: Database Design

The table messages is storing the XML values and is shown in Table [4.17]

TABLE 4.17: Database Table messages

Column Name Data Type Description

m_id INTEGER unique primary key (autoincre-
ment)

host_h_id INTEGER foreign key

error_e_id INTEGER(10) foreign key

m_date DATE date of the error occurrence

m_time TIME time of the error occurrence

m_error_string CHAR(400) error message (log file line)

m_line_number INTEGER(7) line number within the SRB log file

The values host_h_id and error_e_id form the connections to the tables host and

error. The attribute m_id serves as unique primary key. A message has only one error

62

4 Design 4.4 Database Design

number.

The table error with its attributes is listed in Table

TABLE 4.18: Database Table error

Column Name Data Type Description

e_id INTEGER unique primary key (autoincre-
ment)

e_number INTEGER(10) error number

e_name CHAR(200) error name

e_description CHAR(400) error description

An error number can be assigned to many messages. The table host (Tabled.19) keeps

track of the monitored server. A server can be assigned to many messages.

TABLE 4.19: Database Table host

Column Name Data Type Description
h.id INTEGER unique primary key (autoincre-
ment)

h_ip_address INTEGER(10) IP address of the server

A certain message can only be connected to one particular server. It is possible to
create a SRB project, which can be spread over several servers, although for this project
it is defined that a server has only one project. The connection table (Table .21 is

needed to connect the servers with projects (Table 4.20).

63

4 Design 4.5 Virtualiser

TABLE 4.20: Database Table project

Column Name Data Type Description

p-id INTEGER unique primary key (autoincre-
ment)

p_name INTEGER(10) SRB project name

TABLE 4.21: Database Table host_project

Column Name Data Type Description
p-id INTEGER foreign key
hp p_id INTEGER foreign key

4.5 Virtualiser

Since the client as the application with database access is able to run as a daemon it
should not be used to display the database content. Therefore another tool is developed

- the “Virtualiser”.

The Virtualiser is querying the database only and is located at the same system like the
database. Table .22|contains a summary of all needed queries.

TABLE 4.22: Database Queries

Query Expected Answer

find all projects return a list of projects

find all hosts return a list of hosts and the projects
they belong to

find all errors between date X and return a list of errors, dates, hosts,
date Y projects

Continued on next page

64

4 Design 4.5 Virtualiser
Table 4.22Database Queries - continued from previous page
Query Expected Answer
find all errors between date X and return a list of errors, dates, hosts
date Y for project Z
find all errors between date X and return a list of errors, dates, projects
date Y on host Z
find all errors of type X return a list of hosts, projects, er-

rors, dates, errors
find all errors of type X between return a list of hosts, projects, er-

date X and date Y rors, dates

The console output is coloured to support the tool usage. The table defines the

parameter for the display tool.

TABLE 4.23: Virtualiser Parameters

Parameter Explanation

general parameters
-h or —help print help
-c or —config defines configuration file

-v or —verbose
-g or —graph
—nocolor

—file <string>

activates printing of messages [debug option]
show output additionally as a diagram
no coloured console output

dump output into a file (file name has to be given)

database commands

—sql_host
—sql_project
—sql_error

—sql_error_freq

show all hosts

show all projects

show errors (additional parameters possible)

show only frequency of errors (additional parameters possi-
ble)

additional parameters

Continued on next page

65

4 Design 4.5 Virtualiser

Table 4.23 Virtualiser Parameters - continued from previous page

Parameter Explanation

—start_date <date> start date (e.g. 23.12.2005)
—end_date <date> end date (e.g. 23.01.2006)
—start_time <time> start time (e.g. 23:12:19)
—end_time <time> end time (e.g. 23:12:59)

—ip <ip> host IP (e.g. 127.0.0.1)
—project <string> specify a certain project
—error <int,int...> specify a certain error (comma separated list)

To summarise, the user is able, through a combination of parameters, to gain the
needed information from the database. By default the query results are printed in
the console. The console output can be also directed into a file. If desired, the re-
sults are displayable with a graph as a function of frequency. For missing dates, e.g.
for a particular error is no data available for a certain date which lies in between the
start and end data, the error occurance value zero will be inserted. This is necessary
to gain a complete view. Without the insertion the graph will be misleading. To dis-
play the graph a pop-up window is generated. The window contains following basic

components

e graph (bar chart or line chart) including description of the axes

* plot button, to zoom and generated a new window

* save button, to save graph as postscript file

* quit button, to close window
To establish usability a status bar which displays a short description about the currently
used window element is included. A dialog to lead the user through the saving process

has to be built. To avoid accidentally closing of the windows a message box is needing

to inform the user about to event which is going to happen.

The class Display is evaluating the given parameters and querying the database. If a

graph is needed the querying results are passed on to an object of Picture. For each

66

4 Design 4.5 Virtualiser

graph an individual object is created. The window creation is done with modules of
the Tkinter interface. The class Colour is used to colour the console output and is
described in detail in chapter|[5.8]

4.5.1 Virtualiser Class Diagram Design

Figure 4.12] presents the class diagram for the Virtualiser application.

The managing class is called Display. The member variables are shown in Table [d.24]

TABLE 4.24: Member Variables Class Display

Variable Type Explanation

_database_name STRING name of the database file

_database_path STRING location (path) of the database
file

The constructor __init__ verifies the user input and initialises the member variables.
The functions sgl_host and sgl_project provide certain static SQL commands.
sql_error offers a very flexible SQL command. With this function most of the possi-
ble database queries can be executed. The final SQL command depends on the given

parameters.

67

4 Design 4.5 Virtualiser

Tkinter.Label
——

Display
_database_name
Picture _database_path
framus __init__(}
button_quit sql_host() = [Salite]
button_save sql_project() E—
button_select sgl_error()
listbox display_graphi)
status execute_sqgli)
items
search_label
search_value gui_utils
var
_col Colour LoadConfig(}
_windows color usage_exit()
_all_windows __init__(}) c::ec:_t;imt:g
data reen check_da
<72 file_fd rged() v convert_date()
_select_type bald() convert_date_readable()
_the_error teal() check_ip()
_ldate turquoise() find_item()
_lfreqg Ea— fuscia() =7 help_context()
_dropdown_description purple(}) complete_hours()
__init__{} darkred() complete_days()
deactivate() darkblue() complete_d()
—————— activate() blue() complete_m()
save_as() darkgreen() complete_y()
show_barchart() yellow() complete_ticks()
show_line() brown () second()
create_listbox() second_string_to_int()
menu_change() second_string_only()
pre_shutdown() o
7 shutdown()
_select_error()
_select_date()
_show_description()
_show_plot_description()
— _hide_description() e ——
_show_save_as_description()
_show_dropdown_description(}

Vi
[Tkinter.TK |
——

FIGURE 4.12: Virtualiser Class Diagram

Function execute_sqgl is used to execute the SQL commands. As a special feature of
this function is the possibility to pass on a time. If the database is not available the

function will try to execute the SQL command for the defined time.

The class Picture is handling the graphical user interface. The class structure is very
flexible so that bar charts and line diagrams can be created. Table [4.23] contains the

member variables.

68

4 Design

4.5 Virtualiser

Variable

framus

button_quit

button_save

button_select

listbox

status

items

search_label

search_value

var

_col

_windows

_all _windows

_data
_file_fd

_select_type

TABLE 4.25: Member Variables Class Picture

Type
TKINTER.FRAME

TKINTER.BUTTON

TKINTER.BUTTON

TKINTER.BUTTON

TKINTER.LISTBOX

TKINTER.LABEL

STRING

STRING

STRING

TKINTER.STRINGVAR

INTEGER

PITCURE

PITCURE

STRING
INTEGER

STRING

Explanation

object of class Tkinter.Frame
which provides the basic frame
object of class
Tkinter.Button which
realises the “quit” button
object of class
Tkinter.Button which
realises the “save as” button
object of class
Tkinter.Button which
realises the “plot” button
Tkinter.Listbox
Tkinter.Label to realise the
status bar

items which are displayed in
the graph

labels of x-axis

values of x-axis

object of class
Tkinter.StringVar to
modify listbox

indicates of colored output is
required

array of children objects of
Picture

array of all created objects of
Picture

array of SQL query results

file descriptor of file to save

console output

graph type

Continued on next page

69

4 Design 4.6 Remote Controller

Table 4.25 Member Variables - continued from previous page

Variable Type Explanation
_the_error INTEGER chosen error which is exam-

ined closer

_ldate STRING sorted date listbox value
_lfreq STRING sorted error listbox value
_dropdown- STRING description for dropdown menu
_description which appears in status bar

The constructor __init__ initialises the member variables and creates the basic win-
dow with all the buttons. The functions deactivate and activate enable and dis-
able buttons if a message box or additional dialog is opened. With save_as a di-
alog, provided by tkFileDialog.asksaveasfilename, is executed. This dialog
leads the user through the saving process. The listbox is created and initialised with
create_listbox. The order within the listbox can be influenced with _menu_change.
In conjunction with the listbox the functions _select _error and _select_date are
used to extract and process the chosen item from the listbox. pre_shutdown and
shutdown are used to close the windows, whereas pre_shutdown provokes a message
box to inform the user about the upcoming action. The functions show_description,
show_plot_description, show_save_as_description, show_dropdown_description,
and _hide_description are used to modify the status bar. The actual graph are pro-
duced with show_barchart and show_1ine. Both function use the module Graph.py
which contains classes and related methods necessary to create graph widgits. The
code of Graph.py is taken from an example presented in the book “Python and Tkin-
ter Programming” by John E. Grayson [21] and later modified by Dr. Adil Hasan and

the author.

4.6 Remote Controller

To give the user the possibility to adjust the server configuration remotely the tool

“Remote Controller” is developed. The Remote Controller is a console application as

70

4 Design

4.6 Remote Controller

well and the parameter definitions in Table 4.26] show among other parameters those

elements which can be influenced on the server side.

TABLE 4.26: Remote Controller Parameters

Parameter Explanation

general parameters
-h or —help print help
-c or —config defines configuration file
-g or —graph show output additionally as a diagram
—nocolor no coloured console output

server commands

—rpc_status show actual setting of RPC (disabled/enabled)
—disable _rpc disable RPC
—enable_rpc enable RPC
—shutdown shutdown server

—change_interval <int>
—keyword _status
—add_keyword <string>
—delete_keyword <string>
—ignore_error_status
—add_ignore_error <int>

—delete_ignore_error <int>

change parsing interval of server

show actual setting of keywords

add keyword to keyword list

delete keyword in keyword list

show actual setting of “ignore_error”
add error, which the parser should ignore

delete error, which the parser is ignoring

additional parameters

—ip <ip>
—port <int>

host IP (e.g. 127.0.0.1)

port, where the server is listening

The Remote Controller is a very small tool and has only one important class - Admin.

Figure {4.13] shows the class diagram for the Remote Controller. The class Colour,

already used for the Virtualiser, is needed to colour the console output. This is a

special feature for usability and is descriped more closely in chapter

71

4 Design 4.6 Remote Controller

[M2Crypto.m2xmirpelib.Server | Colour
— ! | color
—init__()
green()
red()
bold(}
teal()
turguoise()

Admin fuscia()
_client_certificate purple()
_client_certificate_path darkred()
_client_ca darkblue()
_client_ca_path blue()
__imit__[} darkgreen()
connect_to_server() yellow()
create_ctx() browni)

FIGURE 4.13: Remote Controller Class Diagram

Table [d.27) presents the member variables for the class Admin.

TABLE 4.27: Member Variables Class Admin

Variable Type Explanation

_client certificate STRING name of client certificate file

_client_certificate_path STRING location (path) of client certifi-
cate file

_client _ca STRING name of certificate authority
file

_client_ca_path STRING location (path) of certificate au-
thority file

The constructor __init__ verifies the user input and initialises the member variables.
The function connect_to_server establishes the connection with the server. The

necessary SSL context is provided by create_ctx.

72

4 Design 4.7 GZ Parser

4.7 GZ Parser

The SRB log file analysis showed that due to log file rotation older log files are saved
compressed in another location. Since those files have to be parsed once only, a sepa-

rate tool is developed - the “GZ Parser”.

Table 4.28| shows the possible parameter of GZ Parser.

TABLE 4.28: GZ Parser Parameters

Parameter Explanation

-h or —help print help

-c or —config defines configuration file

-v or —verbose activates printing of messages [debug option]

The GZ Parser uses the same module for evaluating the log file and creating an XML
file as the server (class LogFileParser, described in chapter 4.2.T)). Due to flexibility
a configuration file is used already described section Following issues can be

configured in the configuration file:

location and name of keyword file

location of *.gz files

location of director, where to store the XML files

errors to be ignored

The user ensures by adjusting the configuration file, that the XML file is placed in the
directory of the server, where the client can fetch those files. If this directory already
contains an XML file, overwriting of this file is avoided by renaming the new XML file.
The new XML file has the same name including a number. The number is increasing
with each new XML file.

73

5 Implementation

In this chapter some aspects concerning the implementation of the previous described

design are elaborated. Faced problems and corresponding solutions are highlighted.

During the software development the object oriented programming paradigms mostly
were followed. It was tried to write independent modules to reuse the modules for
similar purposes. The development can be referred as “agile” software development.
“Agile” in this case means being flexible in all directions. This software development

technique follows the principles (manifesto)

Individuals and interactions over processes and tools [22]]

Working software over comprehensive documentation [22]
» Customer collaboration over contract negotiation [22]]

* Responding to change over following a plan [22]]

Considering these principles the customer satisfaction and having always a running
software product have a high priority. Changes are accepted at any time. Behind the
idea of agile software development many methods are hidden. This project used more
or less the software management method scrum. Scrum concentrates more on the exe-
cution process. With regular meetings and setting certain scopes each time the devel-
opment process was constantly supervised and changes could be applied immediately.

Almost at each meeting a running software product could be presented.

For each application applies verifying user input is essential. Therefore all the parame-
ters as well as the data read from the configuration files and keyword files are verified.

This is usually done by the the constructors in the manager class of each application.

The complete source code is available in the appendix in chapter ??. The class docu-

mentation was created with Doxygen [23] and can be found in chapter 2?.

74

5 Implementation 5.1 General Aspects

5.1 General Aspects

The applications were developed on a SuSE 9.2 operating system. The software was
designed and implemented for Python Version 2.2.3. To install Python and other soft-
ware a C compiler is needed. The GCC is recommended. It is to be paid attention to
the fact that Tkinter has to be enabled before compilation. Further, the following ad-
ditional software packages were used to develop the applications and there are needed

to run the software successfully

* M2Crypto Version 0.13 requires OpenSSL 0.9.7 and SWIG 1.3.2[123]

* sqlite Version 2.8.16

* pysqlite Version 1.0.1

* module Graph.py

* bash (bourne again shell)

* awk (Aho, Weinberger, Kernighan)

 egrep (extended global regular expression printer)
Most of the additional packages can also be installed with user rights. The script
structure of all applications is very similar. Files called *classes.py contain most of
the needed classes, file like utils_*.py contain additional small functions which are

used from many classes. The start scripts usually contains the manager class and for

the server and client the deamonise function.

5.2 SimpleSSLXMLRPCServer

Python’s standard library comes with a module called SimpleXMLRPCServer. This
module provides a basic server framework for XML-RPC servers [[13]. The SimpleXML-
RPCServer class is based on the SocketServer.TCPServer class, and the request
handler is based on the BaseHTTPServer.BaseHTTPRequestHandler class [[13].

The aim was to change the SocketServer.TCPServer into a secure TCP server.
Hence a new class was created, derived from the SimpleXMLRPCServer and SSL. Server.
SSL. Server is provided by the M2Crypto package. The new class SimpleSSLXMLRPC-
Server is shown in Listing[5.1]

75

5 Implementation 5.3 The Parsing Approach

LISTING 5.1: SimpleSSLXMLRPCServer

1 class SimpleSSLXMLRPCServer(SSL.SSLServer, SimpleXMLRPCServer) :

2 1

3 overwrite the init function of the SimpleXMLRPCServer and replace it with the
secure SSLServer

4 1

5 def __init__(self, ssl_context, address, verbose, handler=
SimpleXMLRPCRequestHandler) :

6 rr

7 constructor

3 rr

9 SSL.SSLServer. __init__(self , address, handler, ssl_context)

10 self . funcs = {}

11 self.logRequests = 0

12 self.instance = None

13 self._verbose = verbose

14

15 def handle_request(self, serv):

16

17 one request and pass it on the a thread (enables multithreading)

18 re

19 try

20 request , client_address = self.get_request ()

21 if self._verbose == 1:

22 print "%s -> request accepted from %s..... " % (time.ctime (),
client_address [0])

23

24 except socket.error:

25 return

26

27 if self.verify_request(request, client_address):

28 thd = MyClientThread (request, client_address , serv)

29 thd.start ()

Then the init function was redefined by overwriting the SocketServer.TCPServer

with the SSL.Server.

To gain multithreading the request handler was overwritten as well. An incoming
request gets accepted and forwarded to a thread. The thread dies after the work is
finished.

5.3 The Parsing Approach

The success of the software written for this project depends on the correct evaluation

of the given data, depends on the parsing module. Partly already written software was

76

5 Implementation 5.3 The Parsing Approach

used, partly own ideas got implemented to meet the requirements.

The configuration files are parsed with the standard library module ConfigParser,
as described in section As the configuration file is modified by the user, it needs

some simplicity. The chosen way, using this file structure, offers that.

5.3.1 Keywords

The user has a separate file to define keywords. These keywords are case sensitive.
The first idea was to define all those keywords, which the user might be interesting
in, a positive approach. But the user does not know what kind of messages or errors
he might have to face. With the positive keyword approach he might lose important
information. But what he can define more clearly is, in what messages or errors he is

not interested. Hence the keyword approach was change to a negative approach.

During the initialising process the keywords are saved into an array. The entries of the
array can be seen as OR combination. Each entry of this array can contain two items.

“"’

The items are AND combinations. The character serves as negator. For example

following keyword file entry,
findServerExec, NOTICE:!error, NOTICE:!status
would mean that the user in not interested in lines which contain
[findServerExec |V | (NOTICE) A (—error) |V [(NOTICE) A (—status) |

The parser reads a line from the SRB log file. The line and the array is passed on to
the recursive function _test _keywords (). The function goes through the array and if
a keyword or a keyword combination is detected the function returns with the value

-1, otherwise it returns 0.

5.3.2 Line Processing

After the log file line was identified as intended, the error number gets extracted. Not

(134

all lines have an error number. In that case the character is taken instead. Next

77

1
2
3
4
5
6
7
8
9

10
11
12
13
14

5 Implementation 5.4 How to Stop a Daemon

step is extracting the date and time. Unfortunately, the log file entry does not contain a
year. Hence the year is extracted from the log file properties itself. If no data and time
is available the parser module goes back within the log file line by line until a date or
time is found. If the top of the file is reached the needed data is extracted from the
log file properties. Now that all the required information are gathered, the XML file is
written. Finally the current line number is saved. Assuming this was the last line in
the log file, in the next parsing period the parser can start exactly at that line and does
not have to go through the parsed lines again. Then the parser module tries to read the

next line from the log file.

5.4 How to Stop a Daemon

Client and server can be run as a daemon. Once the application is daemonised all
terminals lost control over the daemon. But it is necessary to stop the application.
The applications running in an UNIX operated environment. UNIX usually provides
a certain list of tools to support the user. To stop a daemon a bash script was written.
The bash (bourne again shell) is one of the oldest UNIX command shells. A shell
serves the user as an interface to the operating system. Listing[5.2]shows the script for

stopping the client daemon. The script to stop the server is analogue.

LISTING 5.2: Script stop_client.sh

!/bin/sh
Script to shutdown client daemon

by Andrea Weise — December 2005
University of Reading

MSc in Network Centred Computing
#

echo "stopping client"

name=start_client .py

Find all clients
client_pid=‘ps —elf | egrep $name | egrep —v grep | awk ’{ print $4 }’°¢

if ["S$client_pid" = ""]
then
echo No client is running !

else

78

20
21
22
23
24
25
26

28
29

5 Implementation 5.4 How to Stop a Daemon

/bin/kill —15 $client_pid
client_pid=‘ps —elf | egrep $name | egrep —v grep | awk ’{ print $4 }’°
if ["Sclient_pid" = ""]
then
echo client stopped
else
/bin/kill =9 $client_pid
echo client killed
fi
fi

Line 1 indicates, that the script should be executed by the bash. In line 11 the script
name of the application which needs to be stopped is saved. Line 14 forms the heart
of the script. With the command ps an instantaneous process table is created. The
parameter —e invokes that every process is shown. The parameter -1 activates the long
output format. Parameter -£f tries to gain as much information about the processes
as possible. The sign | is the symbol for pipe and it connects two commands with
each other. The output of the first command serves as input of the second command.
Therefore the created process table is passed on to egrep. egrep stands for extended
global regular expression printer and it searches for a given pattern. In this case all
lines from the process table which contain the previous saved name are given. The
output is again passed on to egrep with the parameter -v grep. This invokes that
egrep’s own process, which would be part of the table is eliminated. Now the process
ID is extracted by using awk. The name awk is assembled from the three creators of this
programming language, Alfred V. Aho, Peter J. Weinberger and Brian W. Kernighan. It
is used to evaluate text and is usually installed on UNIX systems. In Line 14 finally the
4th value of the extracted line, the process ID. This number is assigned to the variable
client_id. If client_id is empty (line 16) no client was running and the script
finishes. Otherwise the script is trying to terminate the process with the command
kill -15, SIGTERM (line 20). After that the script checks again if the process is really
gone. If the process is still running the k111 command is executed again but this time
with the parameter -9, SIGKILL (line 26).

79

5 Implementation 5.5 XML

5.5 XML

5.5.1 XML Creation

The server is generating an XML structured file. Not well formed files will influence
the performance of the server as the server is an XML based server. Therefore, the
creation of the XML has to ensure the final file is well formed. A DTD is not needed

because the parser on the client side has a verifying content handler.

The DOM offers good possibilities to create such a file, because the whole structure
is loaded into memory. Navigation through this structure is then easily possible and
single nodes can be added fast and simple, since the DOM handles this. After imple-
menting the file creation with DOM a performance test was run to evaluate the work of
the DOM parser. A log file with size of 110 MB was taken and assumed each log file
entry is an interesting error, where the information needs to be saved in the XML file.
After 30 minutes the application had not finished parsing and the test was manually
terminated. Since the log file was relatively large, the system was busy with managing
this file and the new XML where the size was even larger, since additional informa-
tion where added. The DOM kept reorganising and restructuring the constantly in size
increasing XML file in memory. That slowed the whole system down. This result was

unacceptable.

Therefore the XML file creating was rewritten, using SAX. SAX implementation of
creating XML file is not as straightforward as DOM. After finishing this implementa-
tion the same test was run again. The application terminated within 10 minutes. Since
SAX streams the data and triggers an event if certain keywords occur the data size

which is kept in memory is compared to DOM in this case very small.

Since all the allowed character are known and the format of the XML file is very simple
a third way of creating the XML file was tested. The file was created using the system
functions write () and read() only. This implementation has the same complexity

as the SAX implementation.

The test was run again several times using SAX and the system functions and Table
shows the final results:

80

1
2
3
4
5
6
7
8
9

5 Implementation 5.5 XML

TABLE 5.1: Parser Comparison

Used Model Average Used Time

DOM manually terminated after 30 minutes
SAX 7:53 minutes

System Functions 4:32 minutes

According to the results the XML creating is finally realised with the standard system

functions.

5.5.2 Problems with XML

The log file may contain characters which are not allowed according to ISO 10646.
If the XML file contains those characters the file is not well formed. That leads to
exceptions during the transfer since the transfer is handled by a XML based server.
Therefore those “illegal” characters have to be found. Deleting the unwanted charac-
ters 1s not a good option, since it would change the context of the log file entry. Thus,
“illegal” characters are exchanged by the character “?”. The user can recognise the
exchange and if needed, can look up the original characters in the log file. Listing
shows the XML file write_entry function which is part of the LogFileParser.

LISTING 5.3: write_entry function

def write_entry (self, tagname, content):

rrr

This function inserts an entry into the xml file.
tagname = tag name
content = message between start and end tag

rr

#find all not allowed character
bad_character = re.sub(’ [\x09\x0a\x0d\x20-\xd7]*", "", content)
replace each not allowed character with 7?7
for i in range(len(bad_character)):

if bad_character[i] == "\x00’:

delete NUL character

content = content.replace(bad_character[i], '’)
else:

content = content.replace(bad_character[i], "?")

81

5 Implementation 5.6 Threads

entry = "<%s>%s</%s>\n" % (tagname, content, tagname)
try :
self. _client_log_file_fd . write(entry)
return 0
except IOError, e:
if self._verbose ==
print "%s -> Problem writing XML file: \"%s\" !" % (time.ctime(), e)

return —1

The actual work is done with Python’s regular expression module from the standard
library. In line 9 all the allowed characters are defined as hexadecimal numbers. The
command re.sub () returns all not matched characters, in this case the “illegal” char-
acters. Then each “illegal” character is exchanged. The character hexadecimal 00 is

deleted, because it does not carrying any information.

5.6 Threads

Threads and their synchronisation was an important task to accomplish. Before the

implementation is explained more detailed, some introducing words about threads.

A process can be seen as a running instance of an application. Each process has its
own resources. A thread is a task within a process. The process can generate several
simultaneously running threads. Contrary to processes, threads share resources e.g.
memory. Therefore, threads can influence each other. Problems like deadlocks or race

conditions can occur.

The client and server application work with threads. To synchronise the access of
shared resources, e.g. the XML file, the mutex concept was implemented. Mutex
stands for mutual exclusion. The gain mutual exclusion the thread has to acquire a
“key”. The “key” controls the access to the critical section. With critical section a code
segment is referred where only one thread can be at a time, since shared resources or
controlling variables are accessed there. If another thread wants to acquire the “key”,
the thread has to wait until the engaging thread releases the “key”. The procedure of

acquiring the “key” is atomic. One way of implementing mutex is the lock concept.

The lock can only be owned by one thread. A simple lock has two states, free or
engaged. Python’s standard library module threading contains such a mechanism. The
lock provides the method acquire () and release(). Both methods are executed

atomically [24]].

82

1

5 Implementation 5.6 Threads

The SQLite developer assert the software to be “threadsafe”. SQLite uses posix threads
on Unix [25]. The gain thread safeness each thread has to call the sqlite_open ()
function. If several different processes try to access the database at the same time,
where each single process has called automatically its own sqglite_open (), the pro-
cess which comes second, receives an exception. The programmer can utilise the
exceptions. In the project implementation, this function is only called during the ini-
tialising process. Later, only the access cursor is passed on to each thread. This way
was chosen to avoid permanently initialising of the database. But this method requires
synchronisation because if several threads use the same access cursor and try to access
the database at the same time, the database behaviour is not predictable and it can lead
to a software crash. Listing[5.4] shows the mutex implementation for the client, where

the access to the database is synchronised.

LISTING 5.4: Client Synchronisation Mechanism

class Mutex:

rrr

This 15Ss makes ire that only or cli is writing into the database. This is

ithin a process! Futhermore it
ads accessing any critical

segement

database lock

_db_locked = threading.Lock()
critical section lock
_locked = threading.Lock()

def __init__(self):
Constructor
self . writing = 0
self . _the_thread = 0

def set_variable(self, threadus):

rrr

set variable writing and the_thread
'

Mutex . _db_locked . acquire ()

if self.writing ==
#set variable
self. writing = 1
self. _the_thread = threadus
Mutex . _.db_locked .release ()
return 0

else:

83

29
30
31
32
33
34

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

5 Implementation 5.6 Threads

if (1 != self._the_thread.isAlive()):
if the thread, which set the variable is dead, reset variable
self . writing = 0

Mutex . _.db_locked .release ()

return —1

def reset_variable(self):

rrr

reset variable writing and the_thread
rr

Mutex . _db_locked . acquire ()
self . writing = 0

self. _the_thread = 0

Mutex . _.db_locked .release ()

def lock(self):
This functions acquires the look.
Mutex . _locked . acquire ()

def release(self):

rror

This function releases the lock.

rror

Mutex . _locked . release ()

The database synchronisation consists of two functions. The function set _variable ()
sets the variable writing. Setting this variable is synchronised with the lock functions.
Thus only one thread at a time is allowed to modify this variable. As a deadlock avoid-
ance mechanism any thread can reset the variable with the function reset _variable ().
Also another method to avoid deadlocks was implemented. Once a process discovers
the variable is set, he checks if the thread which sets the variable is still alive. If this
thread has already died the variable is reset automatically. To make this possible, each
thread which sets the variable leaves his identity. The identity is deleted during the

reset process.

The Mutex class also provides a lock for any other critical section that might occur.
For example, assuming the client is fetching XML files from several server. Once
the file is fetched it is temporarily saved on local disk. To avoid that the different
threads interpenetrate each other by deleting the temporary files, each file has to have
a unique name. The temporary file name is generated at run time. Therefore, each
thread has to verify that the chosen name does not already exist. This verifying process

is synchronised by the functions lock () and release () of the Mutex class. Only one

84

5 Implementation 5.7 Graphical User Interface

thread at a time is able to determine a name for its temporary file.

At the server side the idea is to prevent the client from accessing the XML file, while
the parser is still writing it and vice versa. This is realised with a similar mutex imple-

mentation as explained above.

5.7 Graphical User Interface

A graphical user interface can only be found in the Visualiser. With the parameter -g
or --graph a pop-up window is generated. This pop-up window is an object of the
class Picture which is derived from Tkinter.Tk. Tkinter.Tk generates the main
window. Within the main window a frame is placed. Within the frame widgets such as

buttons or listboxes are placed. But how are the widgets arranged in the frame?

Tkinter provides three different layout manager,

* pack()

tries to arrange the widgets in a rectangle.

* place()

allows to locate the widgets at absolute coordinates.

* grid()

The geometry manager grid () manages the frame like a table with rows and

columns.

For the project mainly the grid () manager was used, because this layout manager
allows to place widgets very precise. The handling is straightforward and the layout is
easy conceivably. To gain the same effect e.g with the pack () manager would require

multiple nested frames. Figure [5.1]shows the grid design for the main window.

85

5 Implementation 5.7 Graphical User Interface

[=1:] X 0608
A Disgram "Error Hufnogr - Frequency”
4 7 46
350
ik
300
r
R
& 0
2 a
= o g 200
4 - N
° 2 s
c =
8 100
(93
g 7] 50 4z 46 g
22
= 3 Il -l
© oz | w7 | b | o 1 13
= -1023] 104 111 LT TU
< ERROR PUNBER
110 (37)
:.1‘; :2) error plot save as quit.
|s99399 (386)
change order in listhox, currently ordered by “errof nymber”
7 first column , sixth column
- [——————
second column | | N < fifth column
)] fourth column
f————————————
third column -
e T

FIGURE 5.1: Grid Layout

In the first row the graph itself is placed. The second row is used for user interactions.

Finally the third row forms a status bar.

In the main window the user can see all errors and their total occurrence. The diagram
can be influenced by the parameters as described in Table #.23] The listbox in row 2
and column 1 displays the same information as the diagram itself. The user can select
a listbox item and then press the button plot, which will give a more detailed diagram,
e.g. done in the main windows it will generate a line diagram about a particular error
as illustrated in Figure

86

5 Implementation 5.7 Graphical User Interface

o0 X 006

Diagram "Frequency - Date" - Error: -1017 - Range: 2005%-10-18 - 2005-10-22

“oZzmocomaom

i}

) , ,
1019 I 10-21 I
10-18 10-20 10-22
DATE

2005-10-18 (2)
2005-10-20 (1)
2005-10-21 (1)
2005-10-22 (1)
change order in listbox, currently ordered by "frequency”

frequency plot save as fuit

FIGURE 5.2: Particular Error as Line Diagram

In the third column of the second row a drop down menu is placed. With this menu the
items in the listbox can be ordered by error frequency or the corresponding value of
the x-axis. The button “plot” triggers a new pop-up window with a new diagram from
the listbox chosen item. The button “save as” is self-explanatory and triggers a dialog,
where the location and name of the postscript file can be chosen. This dialog disables
all other buttons in any other open window of the application. The user has to close
the dialog first to carry on interacting with all the other windows. The button “quit”
triggers a message box, which verifies the user wish to close the window. Again, first

the message box has to be closed to interact with any other window of the application.

The implemented status bar supports the usability by displaying a short description.
The status bar appears immediately after the mouse hovers over a widget. For a fre-
quent user those short informations are sufficient. If the mouse is placed still on a
widget for 3 seconds a tool tip occurs. The tool tips explains the usage of the widgets

and are meant to support new users in the first place.

The Picture class is written in that way, that it can be used for all needed graphs. If

the user wants to get more detailed information, just another object of the Picture

87

1
2
3
4
5
6
7
8
9

5 Implementation 5.8 Further Usability Improvements

class with modified data is created. The database is queried only once, since this is the
most time-consuming process. Just the data required for the next graph is past on to
the new object. Hence the all graphs, apart from the main window, can be created fast.

This is possible because the primary database query receives all the needed datasets.

Each window (Picture object) keeps track of all from this window created objects.
This was implemented to shut down the application quickly. Assuming the user opens
ten windows, it would be a bit inconvenient to click on each window to terminate the
application. Therefore if a window is closed all the “child” windows are closed as well.

In this example, closing the main window will also close all the other nine windows.

5.8 Further Usability Improvements

Console application are usually more difficult to handle than applications with an intu-
itive graphical user interface. To improve the usability of the applications an extended
help was implemented for each application invokable with the parameter -h or —-help.
The help explains each parameter and if required, provides examples to explain the us-

age of the application.

A further improvement was made with colouring the console output for the Visualiser
and Remote Controller. The colour is changed by using ANSI (American National
Standards Institute) escape codes. This are sequences of ASCII (American Standard
Code for Information Interchange) characters. The codes can be used to control cur-
sor movements and display graphics as well as reassign keys [26] on text terminals.
The sequence starts with the escape character followed by a left bracket followed by
alphanumeric characters. The extract from the class Colour as shown in Listing [5.5]

illustrates the sequences used in this project.

LISTING 5.5: ANSI Escape Codes

class Colour:

rr
This class uses the ANSI escape sequences to color the output !
rr
color = {"reset":"\x1lb[O0Om",

"bold":"\x1b[01lm",

"teal":"\x1b[36;06m",

"turquoise":"\x1b[36;01lm",

"fuscia":"\x1b[35;01lm",

88

5.8 Further Usability Improvements

5 Implementation
"purple":"\x1b[35;06m",
"blue":"\x1b[34;01Im",
"darkblue":"\x1b[34;06m",
"green":"\x1b[32;01lm",
"darkgreen":"\x1b[32;06m
"yellow":"\x1b[33;01lm",
"brown":"\x1b[33;06m",
"red":"\x1b[31;01m",
"darkred":“\xlb:3;;06m“}

def __init__(self):

def

return

Constructor

green(self , text):

dye green

n
)

self.color[’green’J+text+self.color[’ reset’]

The colours are defined in the dictionary color. If a console output needs to be

coloured, the corresponding function is called. This function deals with colouring

the output and takes care of resetting the colour scheme.

&9

6 Evaluation and Results

This chapter will present the gained results and some tests, made to verify the results.
Tests were run periodically during the development phase locally and after that on
several systems across the network to create a realistic test environment. Not every
test, which was made is mentioned here, just an overview about the made software

evaluation is given.

To gain an overview about all the applications which got developed during this project,

Figure shows the applications and their connection to each other.

Client Application Server Application SRB — System
Client Server
DG Daemon
(XML-RPC)
A
l XML
File

Database A

|

(Virtualiser

GZ - Remote
Parser Controller

FIGURE 6.1: Application Overview

Each application was subject to extensive parameter evaluation and configuration file

90

6 Evaluation and Results 6.1 Server

input evaluation, e.g detection of wrong IP addresses or missing files. For certain
important modules little test applications were written. For example the database ini-
tialisation process for the database was developed as an extra module first. Only after
this module passed all the tests, such as creating the database structure or inserting
data, it was integrated into the main application. Further it was ensured that at least
once the program was running through each loop. The progress was monitored with

corresponding console output.

In general it can be said that the software was developed after the agile software de-
velopment methodology. This includes thorough tests after the completion of certain

development phases.

6.1 Server

It is important to carry out performance test. This will give insight about how good
the program is handling system resources. The resources which are reasonable to be

monitored for this project are

e CPU utilisation
* virtual memory usage

* disk space usage

The UNIX environment provides free tools to analyse and manage performance. Many
tools offer information about the whole system only. But here the interest lies on
certain processes. To view such information the tool ps can be very helpful. ps is a
powerful tool that gives a snapshot of the current processes [27] and is able to display
threads.

The server executes the most important task, the log file parsing. Hence the server was
examined more closely concerning the performance. Table[6.1|shows the three system,
that were used for testing the software. The properties are gathered from the systems

itself, mainly from the proc folder.

91

6 Evaluation and Results

6.1 Server

TABLE 6.1: Test Systems

Property Theodore Rivers escpc3l

Processor Intel(R) Pentium (R) Pentium III (coper- Intel (R) Pentium

Type M processor 1.60 mine) (R) 4 CPU 3.00 GHz
GHz

CPU 1,599.097 MHz 668,344 MHz 3,001.062 MHz

Cache 2048 KB 256 KB 1024 KB

RAM 515,064 KB 125,488 KB 513,264 KB

Linux SuSE 9.2 SuSE 9.3 SuSE 9.3

Kernel 2.6.8-24.11-default 2.6.11.4-20.a- 2.6.11.4-21.9smp

default
gcc 334 3.35 3.35

For testing purposes a relatively large log file with a size of 136,056 KB was produced.
This file contained 1,706,925 log file entries. Each of the systems had to handle this
file with

1. none keyword specified
2. one keyword specified
3. three keywords specified

4. eight keywords specified

Each single test was executed 20 times. Table[6.2] presents the average execution times.
Also, it was tried not to occupy the systems with unnecessary tasks to receive compa-
rable results. For the time measurement the Python standard library function time ()

was used.

92

6 Evaluation and Results 6.1 Server

TABLE 6.2: Test Results

System parsing time (seconds)
keywords[0] - errors identified: 1,706,925 - XML file size: 395,012 KB
Theodore 1,430.9015

Rivers 5,566.5937

escpc3l 2,233.2219

keywords[1]:NOTICE:!status - errors identified: 569,315 - XML file size: 124,170
KB

Theodore 1,180.5073
Rivers 4,912.1539
escpc3l 1,935.6997

keywords[3]:NOTICE, findServerExec, Success - errors identified: 803 - XML file
size: 173.409 KB

Theodore 30.1293
Rivers 107.3109
escpc3l 24.7377

keywords[8]:NOTICE, findServerExec, Success, svrCheckAuth, srbServerMain,

portalConnect, connectPort, svrConnectSvr - errors identified: 0 - XML file size:

77 Byte

Theodore 61.9903
Rivers 202.1009
escpc3l 40.4878

The results differ according to the system properties. The parsing thread used most
of the CPU capacities, in average 95 %. The thread is not sleeping during the parsing
process and is therefore not giving up his CPU usage. The other threads did not utilise
the CPU according to ps. ps only displays the avarage CPU utilisation of each process.
But it proofs that the sleeping process is not using CPU capacities. This was expected
and therefore, implemented this way. Depending on the system properties it takes
different amounts of time, but none of the systems failed to work up the large log file.
Figure shows a ps measurement during a parsing activity. For each log file entry,
additional information as well as the log file entry itself are saved in the XML file.

Hence the XML became very large for the none keyword test.

93

6 Evaluation and Results 6.1 Server

anderl@theodore: ™ /download reocrd_software> ps -p 8299 -L -o pid, lup,#cpu, “nen,size=SIZE,sz,conmand
PID LUWP xCPU xMEM SIZE SZ COMMAND

8299 8299 0.0 0.9 6060 2707 python start_server.py —c config_server.ini -v

8299 8300 87.5 0.9 6060 2707 python start_server.py —c config_server.ini -v

8299 8441 0.0 0.9 6060 2707 python start_server.py —c config_server.ini -v

FIGURE 6.2: ps Output Server

The process has the PID 8299 identified beforehand with the command ps -x. The

executed command
ps —p 8299 -L -o pid, lwp, %cpu, 3mem, size=Size, sz, command

displays three threads associated with the process 8299 (PID). LWP stands for light
weight process. The parsing thread has the number 8300 (LWP). The main thread has
the same thread number as the process ID. As it was implemented, the parsing thread
was created after the main thread. Size indicates the total size of the process in virtual
memory, including all mapped files and devices, in kilobyte units [27]. The ps output
shows that the server application uses very little memory compared to what large files
the application is handling. It is also visible, that the thread with number 8441 (LWP)
is serving a connected client and was not created immediately after the the parsing
thread.

The test with such large files caused local disk memory problems due to the huge XML
file creation on the test system “Theodore”. The application detected that successfully
and informed the user (Figure[6.3)).

Simple SSL XML RPC Server is rumning

Wed Feb 15 15:54:47 2006 -> waiting for request

Wed Feb 15 15:54:48 2006 -> new log file

Wed Feb 15 15:54:48 2006 -> start parsing

Wed Feb 15 15:56:31 2006 -> Problem writing XML file: "[Errno 281 No space left on device™ ?
Wed Feb 15 15:56:31 2006 -> end parsing

Wed Feb 15 15:56:31 2006 -> parsing time: 102.512390137

Wed Feb 15 15:56:31 2006 -> 133143 errors found

FIGURE 6.3: Local Disk Space Problem

94

6 Evaluation and Results 6.1 Server

The parsing thread stopped the parsing process. But the main thread and therefore the
application did not stop its work. The user can no free disk space and the parser will

continue exactly where he stopped at the next parsing period.

The mutex mechanism was tested as well. To make the test results visible the Mutex

class was temporarily extended with print instructions. Figure [6.4] shows the results.

> Sun Jan £2 Z23:00:3Z2 2006 =zerver thread (10800Z8080) in lock
Sun Jan 22 23:00:34 2006 -> request accepted from 127.0.0.1.....

Sun Jan 22 23:00:34 2006 -> waiting for request

Sun Jan 22 23:00:34 2006 -> request accepted from 127.0.0.1.....

Sun Jan 22 23:00:34 2006 -> waiting for request

> Sun Jan 22 23:00:52 2006 server thread (1080028080) lock released
> Bun Jan 22 23:00:52 2006 client thread (1086315440) in lock

> Sun Jan 22 23:00:57 2006 client thread (1086315440) lock released
> Bun Jan 22 23:00:57 2006 server thread (108B0028080) in lock
>
>

Sun Jan 22 23:00:57 2006 server thread (10B002B080) lock released
Sun Jan 22 23:00:58 2006 client thread (1086315440) in lock
> Sun Jan ZZ 23:01:03 2006 client thread (1086315440) lock released
Sun Jan 22 23:01:34 2006 -> request accepted from 127.0.0.1.....
Sun Jan 22 23:01:34 2006 -> waiting for request

FIGURE 6.4: Mutex Test

A server thread is entering the lock. While the thread engages the lock, two clients
are connecting to the server. The client threads then try to access the lock, because
they have to ensure the parser in not writing the XML file. Only after the server thread
released the lock a client was able to enter. The in Figure [6.4] displayed sequence
of different threads entering and leaving the lock proves, that the mutex mechanism

works as designed and implemented.

As for the server it can be said, that this application is very reliable. Mutex mecha-
nism and deadlock avoidance mechanism make the server a highly stable application.
The ps profiling of the server application confirmed that the server uses the memory
efficient. Misconfiguration of the keyword file such as inserting none keyword can
produce huge XML files.

95

6 Evaluation and Results 6.2 Client

6.2 Client

For the client the database is the most important issue. The database is only a file.
With a file it is easy to tamper. Therefore before the client takes up its real work it

checks if the database file is existing and if

* all database tables exist
* the error, host, project_host, project tables contain data

¢ the database file structure is intact

The result is reported to the user. In case of any anomaly the application terminates.
The feature to detect database corruption became necessary due to the simplicity of
manipulation of the database file. For testing purposes parts of the database file got

manually deleted. Figure[6.5]displays the reaction of the application.

anderl@theudnre?:/thesis/seruer_fiIES/HgCIient) pgfhun Sta;i_clieni.py —-c config_client.ini v

SRB LOG FILE PARSER [CLIENT 1

Starting ...

Thu Feb 9 15:28:33 2006 -> Database exists

Thu Feb 9 15:28:33 Z006 —> database disk image is malformed
ander 1@theodore:” thesissserver_files-/MyClient>

FIGURE 6.5: Database Corruption Detection

The database anomaly was detected. Therefore the user is notified that the database

file structure is defective.

Furthermore, large XML files could successfully be transferred through the Inter-
net. The database actualisation process was done without any interruption. Figure
[6.6] shows the ps output for the client while inserting gathered information into the

database.

96

6 Evaluation and Results 6.3 Other Applications

ander18theodore : " download python-doxygen-1.4.6> ps —p 9507 -L —o pid, lup,tine,xcpu,xnen,size=51ZE, sz, connand
PID LWP TIME »=CPU “MEM SIZE SZ COMMAND

9507 9507 00:00:00 0.0 1.7 11352 4142 python start_client.py -c config_client.ini -v

9507 9508 00:00:00 0.0 1.7 11352 414Z python start_client.py —c config_client.ini -v

9507 9509 00:02:08 43.0 1.7 11352 4142 python start _client.py —c config_client.ini -v

anderl@theodore : ~~downloadpython-doxygen-1.4.6>

FIGURE 6.6: ps Output Client

Three threads are visible. The main thread (LWP 9507) and the manager thread (LWP
9508) are currently sleeping since no CPU is used. The thread 9509 (LWP) is handling
the database updating.

For the client similar performance test as made with the server were executed. The
client application uses more virtual memory as the server but is still using the memory
efficient. The database updating uses approximately 50% of the CPU and database
initialising process uses as much as possible of the CPU capacity. Large files were

handled without problems what make the client also a reliable application.

6.3 Other Applications

The Virtualiser queries the database. With different parameters the query can be spec-
ified. All parameters, also in combination, were tested successfully. Further, several
instances were run at the same time to test the thread safeness of the database as well
as the ability of the application to wait a certain time until the database is accessible
again. None of the applications as well as the database failed. The tests were success-

fully completed.

The graphical user interface was subject to following major tests:

* window resizable
* graph savable as postscript file

* postscript file is readable

97

6 Evaluation and Results 6.3 Other Applications

* buttons work according to the specified task

* quit button activation triggers new window and disables every other button in

every other window

* the zoom was executed, missing data got inserted with the value 0

All test were successfully executed.

For the Remote Controller as a console application only the parameter, also in combi-
nation, got tested extensively. It was also tested if the collaboration with server worked

reliable and the server fulfills the given task successfully.

The GZ Parser uses the same parsing module as the server. Therefore the parsing
process is just as stable and reliable. The created XML file placement in the specified

folder was accomplished.

To summarise, it can be said that all applications work reliable. Occurring problems

are reported to the user with an appropriate advice.

98

7 Conclusion

This chapter is used to summarise the dissertation. Further, the original ideas are

compared with the results and the achievements of the project presented.

7.1 Summary

This project was concerned with the development of tools to monitor the grid data
management system Storage Resource Broker, originally developed by the SDSC in
California (United States). An overview about the SRB was given in the beginning
of this dissertation. The SRB systems work across the network. Therefore, some
for this project developed tools are able to communicate through the network. Basic
network technologies, Internet security issues and other fundamentals in conjunction
with this project were explained for better understanding. Based on the client-server-
architecture two main applications were developed. The SRB log file evaluation was
the most important task to accomplish. The server is handling the SRB log file parsing.
The parsing is configurable with external files. The wanted informations are saved into
an XML file. This file is fetched from the client. The client saves the gathered and
already structured information in a database. A client is able to observe several servers

at the same time.

To complete the set of tools and to provide more usability three additional application
were designed and developed. The Visualiser presents the database content in a clear
way to the user. The user is able to specified the database query with parameters.
Additionally a graph can be displayed. The graph shows the error frequency in general
and if requested error frequency over a time period which is zoomable up to one day.
Through the graphical user interface it is easily possible to save the graph as postscript
file.

99

7 Conclusion 7.2 Achievements

The application Remote Controller can be used to influence the parsing behaviour of
the server remotely. The GZ Parser was developed to work up older SRB log files,

which are already compressed to *. gz files.

7.2 Achievements

The original idea to develop monitoring tools is fully accomplished. The client-server-
application is highly configurable in many aspects. Tests proved the client and server

are working reliable and stable, even as daemons in the background.

The Virtualiser is a tool to envision the information, client and server have provided.
The virtualisation process is also very flexible. Next to a coloured console output, a
savable graph can be generated. This tool provides all necessary instruments to gain

fast a wide overview about the SRB servers regarding occurring errors.

The SRB administrator does not have to be locally present to adjust the parsing pa-
rameters. With the Remoter Controller he has the possibility to influence the parsing
process at any server, at any time, from any location. The tool saves therefore valuable

time and provides flexibly for the SRB administrator.

The project requirements are met. The provided tools will support the SRB admin-
istration and ease the SRB system evaluation by identifying fast and easy problems
within the SRB system. The developed applications are not only restricted to the SRB

system. Any other system with a text log file can be monitored.

100

8 Future Prospects

Software products are never finished. There will always be issues which are missing or
could be done in a different way. This chapter just points out a few aspects for future

developments.

For this project Python Version 2.2.3 was used to be compatible with already existing
software products. But analyses and development showed that a higher Python version
would have eased the implementation process. Therefore, to be able to use already
existing Python modules such as the “pyparser” introduced in chapter [3.1] an up-to-
date version of Python is recommended for further software developments. The current
version is Python 2.4.2 [[13]].

The graphical user interface fulfils the requirements. The implementation was done
with the standard library only. For further extensively diagrams and graphs the im-
plementation process might become very complex. The matplotlib is a python
2D plotting library which produces publication quality figures in a variety of hard-
copy formats and interactive environments across platforms [28]] and would serve this

purpose well.

At the moment a connection can only be established to the server without a firewall
or the firewall has to be configured especially. A firewall restricts the access from
the outside network to network resources within a private (inside) network. To avoid
opening the firewall and still to be able to run the software, HTTP tunnelling could be a
solution, since HTTP connections are usually allowed. Most of companies, institutes,
or universities use proxy servers as part of their firewall. A proxy server is computer
system which handles the data transfer from the outside to the inside network. A
application can send a request to the proxy server. The proxy server will then execute
the request and send the answer back to the application. The developed software could

be extended, that the connections are made using the proxy server.

101

References

(1]
(2]

(3]
(4]
(5]

(6]
(7]
(8]

(9]

[10]
[11]

[12]
[13]
[14]

[15]

Grid-Computing. http://de.wikipedia.org/wiki/Gridcomputing.

Council for the Central Laboratory of the Research Councils (CCLRC).
http://www.cclrc.ac.uk/Activity/ WhoWeAre.

CCLRC e-Science Centre. http://www.e-science.clrc.ac.uk/webl
SDSC Storage Resource Broker. http://www.sdsc.edu/srb.

A. Rajasekar, M. Wan, R. Moore, W. Schroeder, G. Kremenek, A. Ja-
gatheesan, Ch. Cowart, B. Zhu, S.-Y. Chen, and R. Olschanowsky.
Storage Resource Broker - Managing Distributed Data in a Grid. Technical report, San Diego
Supercomputer Center (SDSC), University of California at San Diego.

C. Hunt. TCP/IP Network Administration. O’Reilly, second edition, December 1997.
AppleTalk. http://de.wikipedia.org/wiki/Apple_Talk.

R Fielding, J. Gettys, J Mogul, H. Frystyk, L Masinter, P Leach, and T Berners-Lee.
Hypertext Transfer Protocol —- HTTP/1.1. http://www.ietf.org/rfc/rfc2616.txt.

J. Viega, M. Messier, and P. Chandra. Network Security with OpenSSL. O’Reilly Media Inc., first
edition, 2002.

Secure Socket Layer. http://www.windowsecurity.com/articles/Secure_Socket_Layer.html.

N. Walsh. A Technical Introduction to XML. http://www.xml.com/pub/a/98/10/guide0.html?page=2#AENG63,
1998.

C.J. Date. Introduction to Database Systems. Addison-Wesley, eighth edition edition, 2004.
Python. http://www.python.org.

P. McGuire. pyparsing — an object-oriented approach to text processing in Python.
http://pyparsing.sourceforge.net/.

Unix Programming Frequently Asked Questions - Process Control.
http://www.erlenstar.demon.co.uk/unix/faq-2.html, September 2000.

OpenSSL. http://www.openssl.org, October 2005.

M. Sjogren. Python OpenSSL Manual. Technical report, Release 0.6.
http://pyopenssl.sourceforge.net/pyOpenSSL.html/pyOpenSSL.html.

SWIG - Executive Summary. http://swig.sourceforge.net/exec.html, 2004.
M2Crypto = Python + OpenSSL + SWIG. http://sandbox.rulemaker.net/ngps/m?2.
About SQLite. http://www.sqlite.org.

J. E. Grayson. Python and Tkinter Programming. Manning.

Manifesto for Agile Software Development. http://www.agilemanifesto.org, October 2005.

102

http://de.wikipedia.org/wiki/Gridcomputing
http://www.cclrc.ac.uk/Activity/WhoWeAre
http://www.e-science.clrc.ac.uk/web
http://www.sdsc.edu/srb
http://de.wikipedia.org/wiki/Apple_Talk
http://www.windowsecurity.com/articles/Secure_Socket_Layer.html
http://www.xml.com/pub/a/98/10/guide0.html?page=2#AEN63
http://www.python.org
http://pyparsing.sourceforge.net
http://www.erlenstar.demon.co.uk/unix/faq_2.html
http://www.openssl.org
http://pyopenssl.sourceforge.net/pyOpenSSL.html/pyOpenSSL.html
http://swig.sourceforge.net/exec.html
http://sandbox.rulemaker.net/ngps/m2
http://www.sqlite.org
http://www.agilemanifesto.org

References References

[23]
[24]

[25]
[26]
[27]

(28]
[29]

[30]

[31]

[32]

[33]

[47]

[48]
[49]
[50]

Doxygen. http://www.stack.nl/ dimitri/doxygen, January 2005.

G. van Rossum. Lock Objects - Python Library Reference. Technical report, PythonLabs, May
2003. http://www.python.org/doc/2.2.3/lib/lock-objects.html.

SQLite Threading. http://sandbox.rulemaker.net/ngps/149.
ANSI CODES. http://rrbrandt.dyndns.org:60000/docs/tut/redes/ansi.php.

B. Lankester, M. K. Johnson, and R. Sladkey. ps Linux User’s Manual. Technical report, July
2004.

Matplotlib. http://matplotlib.sourceforge.net, November 2005.

A. Rajasekar, M. Wan, and R. Moore. MySRB & SRB - Components of a Data Grid. Technical
report, San Diego Supercomputer Center, University of California at San Diego.

AA Verstraete. Data Communications Protocols In-Depth.
http://www.smeal.psu.edu/misweb/datacomm/ID/ID_PROTO.BAK, 1998.

Information Sciences Institute. TRANSMISSION CONTROL PROTOCOL (RFC 793). Techni-
cal report, Information Sciences Institute, University of Southern California, California, 1981.

Information Sciences Institute. INTERNET PROTOCOL (RFC 791). Technical report, Informa-
tion Sciences Institute, University of Southern California, California, 1981.

J. Plate and J. Holzmann. Sichere Protokolle. http://www.inf-wiss.uni-
konstanz.de/CURR/summer(Q0/ec/sicher.html.

IETF. Transport Layer Security (TLS). http://www.ietf.org/html.charters/tls-charter.html, 2005.
DOM - Document Object Model. http://www.w3.org/TR/REC-DOM-Level-1/introduction.html.
Official Website for SAX. http://www.saxproject.org/.

H. Herold. Linux/ Unix - Programmierung. Addison-Wesley-Longman, 4. revised edition, 2002.

R. Fischbach. Beschraenkung aufs Wesentliche. iX - Magazin fuer professionelle Information-
stechnik, 11, 1999. http://www.heise.de/ix/artikel/1999/11/184/.

About pysqlite. http://initd.org/tracker/pysqlite/wiki/About.

A. Martelli, A. Martelli Ravenscroft, and D. Ascher. Python Cookbook. O’Reilly, second edition,
March 2005.

M. Ascher, D.and Lutz. Learning Python. O’Reilly, second edition, December 2003.
K. Giinther. BTgX GE-PACKT. mitp, first edition, 2002.

M. Weigend. Python GE-PACKT. mitp, second edition, 2005.

K. Giinther. Linux GE-PACKT. mitp, second edition, 2002.

J Klensin. Simple Mail Transfer Protocol. Technical report, AT&T Laboratories, 2001.

J. Goebel, A. Hasan, and F. S. Tehrani. The Book of Python - From the Tip of the Tongue to the
End of the Tale. No Starch Press, expected in June 2006.

J. W. Shipman. Tkinter reference: a GUI for Python. Technical report, New Mexico Tech Com-
puter Center, August 2005. [www.nmt.edu/tcc|

fabFORCE.net. DB Designer 4. http://fabforce.net/dbdesigner4,

ActiveState. Komodo. http://www.activestate.com.

B. Dufour. A Comprehensive Introduction to Python Programming. Technical report, McGill
Univeristy.

103

http://www.stack.nl/~dimitri/doxygen
http://www.python.org/doc/2.2.3/lib/lock-objects.html
http://sandbox.rulemaker.net/ngps/149
http://rrbrandt.dyndns.org:60000/docs/tut/redes/ansi.php
http://matplotlib.sourceforge.net
http://www.smeal.psu.edu/misweb/datacomm/ID/ID_PROTO.BAK
http://www.inf-wiss.uni-konstanz.de/CURR/summer00/ec/sicher.html
http://www.inf-wiss.uni-konstanz.de/CURR/summer00/ec/sicher.html
http://www.ietf.org/html.charters/tls-charter.html
http://www.w3.org/TR/REC-DOM-Level-1/introduction.html
http://www.saxproject.org/
http://www.heise.de/ix/artikel/1999/11/184/
http://initd.org/tracker/pysqlite/wiki/About
http://fabforce.net/dbdesigner4
http://www.activestate.com

References References

[51] SRB Workshop. http://www.sdsc.edu/stb/Workshop, February 2006.

[52] K. Schwaber. SCRUM - It’s About Common Sense. |http://www.controlchaos.com, December
2005.

53] Informal Language Comparison Chart(s). http://www.smallscript.org.
54] E.Raymond. Why Python? LINUX JOURNAL, 2000.

55] MySQL. http://www.mysql.de.

56] PostgreSQL. http://www.postgresql.orgl

104

http://www.sdsc.edu/srb/Workshop
http://www.controlchaos.com
http://www.smallscript.org/Language%20Comparison%20Chart.asp
http://www.mysql.de
http://www.postgresql.org

Appendix A

Development Environment

For the design, development and documentation following software were used during

this project:

* DB Designer 4.0.4.9 Beta [48]]

SuSE Linux 9.2
Komodo 3.2 Trail [49]

gcc 3.3.4
egrep 2.5.1

GNU Awk 3.1.4
GNU bash 3.00.0(1)

Python 2.2.3 [[13]
IATEX 2

M2Crypto 0.13 [19]
SQLite 2.8.16 [20]
pysqlite 1.0.1 [39]

TgXnicCenter 1 Beta 6.31EI
MiKTgX 2.47]

Umbrello

doxygen 1.4.@

Thttp://www.toolscenter.org
Zhttp://www.miktex.org
3http://www.stack.nl/dimitri/doxygen/

105

A Development Environment

References

Table [6.1] shows the systems which were used for testing the software. ‘“Theodore”

was the development system.

Property

Processor
Type

CPU
Cache
RAM

Linux

Kernel

gce

TABLE A.1: Test Systems

Theodore Rivers
Hardware Properties
Intel(R) Pentium (R) Pentium III (coper-

M processor 1.60 mine)

GHz

1,599.097 MHz 668,344 MHz

2048 KB 256 KB

515,064 KB 125,488 KB
Software Properties

SuSE 9.2 SuSE 9.3

2.6.8-24.11-default 2.6.11.4-20.a-

default
334 335

escpc3l

Intel (R) Pentium
(R)4 CPU 3.00 GHz

3,001.062 MHz
1024 KB
513,264 KB

SuSE 9.3
2.6.11.4-21.9smp

3.3.5

106

Appendix B

Detailed Class Diagrams

B.1 Remote Controller

w | M2Crypto.m2xmirpclib.Server |
| |

)

Colour

- color :

Admin

- _client_certificate @ string

- _client_certificate_path : string
- _client_ca : string

- _client_ca_path : string

+ __init__(config : string) @ void
+ connect_to_server(server : string, port : int) : M2Crypto.m2xmlrpclib. Server
+ create_ctx() : M2Crypto.55L

+ __init__() : void

+ agreen() : string

+ red() : string

+ bald() @ string

+ teal() @ string

+ turquoise() : string
+ fuscia(} : string

+ purple() : string

+ darkred() : string
+ darkblue() : string
+ blue(} : string

+ darkgreen() : string
+ yellow() : string

+ brown() : string

FIGURE B.1: Remote Controller Class Diagram

107

B.2 Server

PIoA © (BuITs © BsW "BUIRs © SBesn ¢
BULRS : (BULS © Wal ‘BULYS ¢ SMISH)WaNBAOWRI +
BuLns ¢ (BuLns © Sni)spIoMABI 120 +

Ju1 : (BUInS : d)dTPB +

Plon : (Bupns : Lped iy Tjwx Buins : sweupiomARY ‘Buins : wed“piomAmY Ul [EAIEIUL 'BULAS ¢ aILBYU0D “XEIn © aioudewas

BULAS : (BULs § BUSR ‘BULGS | 3] BUUOIPEDT +
*: wpaeas)puy +
DBuLss oy 351 +

Buins : wed sl WK -
BuLs : sweupionA3y” -
Burns : ed piomay” -

108

2 soquan” -
Sau
PIon ¢ (U1 T SMER P saE e 155 +
PION £ (PERIUL ¢ PESIT2U) U1 ¢ nlen)UIS A RIqeeAToS +
pron : ()i +
0l parol ¢
0= 201 : piTpean Buis g -
0= 301 : Buisied +
0= tEp s
JSPISAS Ysaiar oI
1 (Butas ¢ souweu; ‘Burns : swswap ‘Buins Bor §
201 (Buins : sy dwsy swey Suns
Dpotpesiu]

SIUPI0MAS) “BuLS : 314D 'BuIS : Sweu B Iw ‘BuLAS : UIed B IWx ‘BULAS : 1011210UG) ‘BULS : PIOMASY DULIS : SWEUSINEO] ‘DULS : WedaIBol ‘DuLis | wed 26 ur

BuLns : sweu™:

Buins : yeds)
35143114607 : 4251

Pion + Qianizs uni ¥

1o0q : (BuLs

buLs : aiypiomA -
wripr - BuLs : ApuBLULS -

Peaiy LiasiedAn

Buuns : yed 26 -

PIOA * (301 ¢ 5 BIl) 'BULTs : SWEU B 13SIEdJa1IBo] SAEUE +

31 (BuLs = e IBqUINU I01 13 PRI +

wn : (ui ¢ ek “BuLYS : BuLRs BwR Jaw PENXE” +

U1 (BULAS | BULISISS} U1 § SPIOMAZ JoTINOWE ‘BULES 1 ISIIPJOMAI)SPIGAR 3521 +
PIoA © (3u1 : d0442)J011z " 240uBI 23epdn +

Plon © (BULYS : sk spaomAmf aqepdn +

U1 ¢ (BuLgS : JUs3U0D “BULYS : SWEUBE)ARUS LA +

Ju1: (Bupns : sweupAnusTyiErs +

Buins : ()sauTsa R0 -

Buis : (Buis : sweu B IsauN IS YL -

21 (Buins ¢ sweu)AnuaTpus +
U1 ¢ (Burns : BeyBsw AUl ¢ pJ)BEY aBessaUTIsE RIS PUY +
pion : (posas +

Jur (B : Sweu Bi)sAUITISITISE +

(qui : 3509194 "GuLIS : Bweu”aly|wx “BuLs : Yied Bl I U1 ¢ J0LIT510UB! ‘uLs : SPIOMASY ‘DUl : WedaGo U +

Burs thed 1G0T -
Buus : spiomka
Ju1t JoaTa10uBI” -

BuLs : Ul ISy -
T- =301 pya b0 B -

0= 3u1 * J3qWNUsYa sE -
BuLns : 31y BoI U -

e51e4a114601

2 : Jousa"ai0uBr” -
Buins : piowkey -

BuL3s : ped paomAay” -
Bupns ¢ sweupiomAmy” -

Buins : R TIenES” -

5503k

JonIssSIAN T U1 | D AuaA ‘BULnS © AJian "BULSS T SIS “BUIRS | S Jul T 556a7en BUIS FES
JBMIRSOANTMNISSAIWIS | (130 2SIQTH XSRS © 12A135daWx UL £ U0d ‘BULAS © SSBIpPE)IRAIRS RIS +

Plon : (uu) : as0q.an ‘Bupns : 1135~e) ‘BuLS : U Iansas) YU +

01 ssoqion -
Buins : SuRIE e -
BuLs : BRI IeNES” -

PIon : (PR(a0™420135 1SS Ayl : PALAOAISS “BuLS : S52IpPE “PaIGoTISANbaI : 153nbaI)Hur

PR T (Ui

B Detailed Class Diagrams

B.2 Server

3090 131135 155 AN 135 -
BuLRs : sl -
palaoysenbas : 3sanbai -

Peaiu usIAR

ﬂ 2|

1omias 155 AW
Do ¢ (131155 785 AW AJSEEanbaT SPUEL +
DIOn ¢ (J3MIBSIANTHYISSRIAWIS : I3IpURY Ul 3500124 "IS5"01AIDZH ¢ IXEIUCY 1SS 'BULDS : SS2IPPR) WU +

01T 3s0qIan -
auoN = : auesul
0= 111 sisanbayBol +
sun) +

iagram

Server Class Di

FIGURE B.2

B.3 Client

B Detailed Class Diagrams

B.3 Client

Do - s

B - ast"sseuewp ‘B : swsusssamep ‘B - st

T

ETS|
Dl (B : 950 "Guuns ¢ W™ ‘DUt ¢ Sse" s 'Suns 1SS EVUS 1 Jo"SA0UOY ") ‘B | S52IPDEIw ¢ oo "BULnS WS Y"E> DUt 1 "Guuns ped s "ouuns s 351mnsn e ‘seaeseqi ¢ oo ‘eidewss : pae d

sssasain
eroudauss
s

iy s -

besipsi

P (Buns - soqian "Suuns sasn

o
¢ ssupperiious

i b : e

S (B Sunnsien Y spromko o Yonewe S

pon : s

DI (a0 555009y e " 4040 G 1 S3suCt)

iagram

t Class Di

Clien

FIGURE B.3

109

B.4 Virtualiser

B Detailed Class Diagrams

B.4 Virtualiser

BUs ¢ (BUYs @ Waumoig +
BuLS ¢ (BULS @ XAMOII3A +
BuLs ¢ (Bus @ xa)usaIBiIEp +
Bus ¢ (Bulys © wEaniq +
Bups ¢ (BuLIS @ Jx23)aniQHEp +
BuLs ¢ (BULIS @ x3)pasep +
BuLys @ (Buins : wa)aidind +
Bups © (Bulns © IxE)epsny +
Buigs ¢ (Bulss : 3xa)asionbuny +
BuLs © (BuLs :)jea +
BuLs @ (Buins @ XA)pIoq +
Buins © (Buins : wapad +
Bups © (Bulns @ IxE)UsaI6 +
ploa : ()7 +
BuLs : 10jod +

anoios

Buins : (Bulns © 73 'Duiis : [)Aue Bulns puodas

up ¢ (Bulgs : 73 'Buigs : T33uI oy Buis pucoas

Jun s (Ui Z3 MU [)pucoas

(qui : sanjea ‘Buils : |aqe|)syenmadwos

play~mau 'Buiys @ sep pua ‘Buils @ Aep uEs | AR mau)A sedwos
plaly mau ‘Buiys : a1ep pua 'Bulis : 29ep uEs | ARLE mau)w ejadwod
: play~mau ‘Buins : RepTpua ‘Buins : Jep Ues ¢ @ AeueTmau)p aedwen
(:plau~aniea ’ : skep)skep~ajadwon

plai ' ¢ |2qer)sinoy “ejeidwos
ploa : (ui : Jojoa)xequca djay
(: smy: aJeas)way T puy
ur : (BuLis : didiopays
6uLys © (BuLs @ SNIE)a|qepEa) A1ep 1IaAUGD
Buras : (Bupis : snjep)egep Januoa

u: (B : snyep)agep ey

3

I

01 : (BuLs © snwn)awn AU
PIOA (ju ¢ Jojo3 'BuLys 1 Bsw ‘106q © sweuBoid)yixaaBesn
Bupgs : (@ Bluno)Blucopeo]
sin_1n6
—— —
—— —
uonngauML FTRETILTY
Fia

pioA ¢ (BULS © Ay ‘BuLs ¢ 3dU3SaP ‘Ul t pITSNIL UL ¢ JUNDWE(AqE] Ul ¢ Joas ‘Buins
*Buins : addy Pajes ‘Buis ¢ eep ‘Buils ¢ aqelA *BuLls : (aqex Buis ¢ 13qe

pion : (Buins : dudsap un : pyTsn

pioA ¢ { : Juenajuondosap Umopdoip mous -
ploa © (: Juaaz)ucnduosap se anes moys -
pioa © (: jusas)usndLdsapTapIYT -

pioa : { : quaaa)uondissapjold Mous ™ -

proa @ (@ uara)uonduosap mous -
Dion : (Jajep pajes -

pioa : (J1oLaT P3RS -

PIoA : (Jumopinys + [

pioa : (Jumopinus~aid +

X2puy 'Bup3s : aweu)sbuey NuBW +
PIoA © (3] : Joula)xoq
3qe| * @ smsi| ‘BULS @ BWBUTMOPUIM)BUITMOUS +
smysi| ‘Buis © WU MOpUIM)LIEUDIEG MOYS +
plo : ()seanes +

ploA © ()3eane +

pioa © ()ajeAEap +

PIOA © (: SMopuIM “nojoD : Jojo3) Ul +

ploA & (3uy : apow "y

304y palas ‘Buins ¢ eep ‘BuLs ¢ [3q8A 'BULS ¢ |3q2(x BuLs :

{

HLdBUIRL

Buns © uopdinsap umopdodp -
Buwgs © bayl -
BuLs © :9ep|” -
FLITERE T

BwedJI23uNL

2In31d 1 SMopuIMTIET -
24N1Ig © sMopum -
Jnejen »
JBABULIS IZIUPIL 1 JBA +
U BnpEATY3IESS +
aqe Tyzieas +
Buugs @ sway +
1327 20UBL ¢ SMIES +
X0QISITUZIUNL ¢ XOTISI| +
UOPNG ISIUPIL © PRIBSTUoHNg +
UOHNG UL | MRS UCHNG +
uoPNgLBUL : INbTuckNg +
Wl IUNL | Snwel +

2inpid

)

pIoA : (qul © py3)

PIoA : (U1 ¢[00 'a)bS [q0 SSqEIEp U1 : JBM)bs sjnoexa +
“Jnojog © (03 'BuLis : jasejep)ydelfARdsip +
Buins : (3u1 : Jowsa ‘Buins : palosd ‘Buins @ 3soy "Bulis ¢ 73 'Bulns @ 13 Buins :

2D ‘Buls © [p)JoLEIbS +
Buls ¢ (Jpaloid jbs +
Bus ¢ (NsoyT|bs + <

pioa : (& Blyuos) U + e —

Guis © uyed eseqelep - 12qeT 423U L

Guls @ aweu aseqelep -

Aeidsia

iagram

Class Di

1Ser

Virtuali

FIGURE B .4

110

Appendix C
Software User Manuals

C.1 Server

The SimpleSSLXMLRPCServer is parsing the SRB log file and is a console applica-
tion, only controllable through parameters. The application requires Python 2.2.3 or

higher, M2Crypto 0.13, bash, egrep, and awk. Table [C.1|displays all available param-

eters.
TABLE C.1: Server Parameters
Parameter Explanation
-h or —-help print help
-c or —config defines configuration file
-v or —verbose activates printing of messages [debug option]
-d or —-daemon daemonise the server

The server prints messages on the screen is —v is passed on. A message is printed if
an event happens such as a client is connecting or the server is parsing. If -v and -d
are passed, the messages are printed into a log file, which is placed in the same folder
as the start script is located. The help can be seen with ~h. This parameter disables all

other passed parameters. The help contains basic examples too.

Before the server can be started with

python start_server.py -c configuration_file.ini [-v | -d | -h]

111

C Software User Manuals C.1 Server

the configuration file has to be adjusted.

C.1.1 Configure the Server

Table [C.2]explains all parts of the configurations file.

TABLE C.2: Configuration File Server

Parameter

Explanation

Section Files

server_certificate

name of the server certificate file

server_ca name of the ca file
srb_log name of SRB log file
keyword name of keyword file

Section Path
path_server_certificate path of the server certificate file
path_server_ca path of the ca file

path_srb_log

path of SRB server log file

path_gz path of SRB server gz log files (old log files)
path_keyword path of keyword file
Section Misc
minute how often should the server parse the srb log file,
e.g. 30 = means every 30 minutes
interface network interface e.g. lo or ethQ or ethl
port port on which the server is listening, default is

ignore_error

6000
some error numbers might not be interesting, so
the errors should be ignored, e.g. 0, 3, 5 (comma

separated list)

The server can be stopped with the bash script stop_server. sh.

112

C Software User Manuals C.2 Client

C.1.2 Examples

For a better understand some simple examples are given:
1. python start_server -c config_server.ini -v
run server within a console and print messages

2. python start_server -c config_server.ini -v -d

run server as daemon, messages are written in log file

3. python start_server -c config_server.ini -d

run server as daemon

C.2 Client

The client is fetching the preprocessed data from the client and inserts the information
into a database. The application requires Python 2.2.3 or higher, sqlite 2.8.16, pysqlite
1.0.1, bash, egrep, and awk. This console application is controllable through the in
Table [C.3|displayed parameter.

TABLE C.3: Client Parameters

Parameter Explanation

-h or —help print help

-c or —config defines configuration file

-v or —verbose activates printing of messages [debug option]
-p or —smtp_password activates mail notification sending

-d or —daemon daemonize the client

The client prints messages on the screen is -v is passed on. A message is printed if
an event happens such as a client is connecting to a server. If -v and -d are passed,
the messages are printed into a log file, which is placed in the same folder as the start
script is located. The help can be seen with ~h. This parameter disables all other

passed parameters. The help contains basic examples too. The mail notification can

113

C Software User Manuals C.2 Client

be activated with -p. This parameter invokes the application to require the password
for the SMTP server. The connection to the SMTP server is tested. If the test fails, the

client will terminate.

To be able to run the client with the command

python start_client.py -c configuration_file.ini [-v | -d | -p | -h]
the configuration file has to be adjusted first.

C.2.1 Configure the Client

Table [C.4] explains all parts of the configuration file.

TABLE C.4: Configuration File Client

Parameter Explanation
Parameter Explanation

Section Database
name name of the database file
path path of the database file

Section Files

error_description
client_certificate

client_ca

name of the error description file
name of the clients certificate file

name of the ca file

Section Path

path_error_description
path_client_certificate

path_client_ca

path error description file
path client certificate

path ca file

Section Server

serverlist

the servers including the port, e.g.

serverl_IP:serverl_port,server2_IP:server2_port

Section Misc

Continued on next page

114

C Software User Manuals

C.2 Client

Table C.4 Configuration File Client - continued from previous page

Parameter Explanation
minute how often should the client fetch the XML file
from server in minutes
Section Project
name the name of the project, at the moment only one

project is possible

Section Mail

smtp_server

SMTP server address

user user name for the mail account

from mail identification (where does the mail come
from), please note that some mail server does not
support own identifications

Section Mail To

address_1 email address of the 1. person

file_keyword_1 file where keywords are defined

path_keyword _1 path of keyword file for 1. person

address_2 email address of the 2. person

file_keyword_2 file where keywords are defineend

path_keyword 2 path of keyword file for 2. person

The section “Mail To” can be extended to as many persons as needed. It is only
important to follow the predefined pattern. The client can be stopped with the bash
script stop_client.sh.

The client fetches the XML files from the server and saves the files temporary on local
disk. If for some reason the XML processing is interrupted, within the next parsing

period the client deals with the older files too.

C.2.2 Examples

For a better understand some simple examples are given:

115

C Software User Manuals C.3 Virtualiser

1. python start_client -c config_client.ini -v

run client within a console and print messages

2. python start_client -c config_client.ini -v -d

run client as daemon, messages are written in log file

3. python start_client -c¢ config_client.ini -d

run client as daemon

4. python start_client -c config_client.ini -p

run client within a console and activate mail notification

C.3 Virtualiser

The Visualiser can be used to present the database content. This application provides
instruments to gain precise, user specified data. The application requires Python 2.2.3
or higher, sqlite 2.8.16, and pysqlite 1.0.1. This console application is controllable
through parameters, listed in Table

TABLE C.5: Virtualiser Parameters

Parameter Explanation

general parameters
-h or —help print help
-c or —config defines configuration file

-v or —verbose
-g or —graph
—nocolor

—file <string>

activates printing of messages [debug option]
show output additionally as a diagram
no coloured console output

dump output into a file (file name has to be given)

database commands

—sql_host
—sql_project
—sql_error

—sql_error_freq

show all hosts

show all projects

show errors (additional parameters possible)

show only frequency of errors (additional parameters possi-
ble)

Continued on next page

116

C Software User Manuals C.3 Virtualiser

Table C.5 Virtualiser Parameters - continued from previous page

Parameter Explanation

additional parameters
—start_date <date> start date (e.g. 23.12.2005)
—end_date <date> end date (e.g. 23.01.2006)
—start_time <time> start time (e.g. 23:12:19)
—end_time <time> end time (e.g. 23:12:59)

—ip <ip> host IP (e.g. 127.0.0.1)
—project <string> specify a certain project
—error <int,int...> specify a certain error (comma separated list)

The database commands can only be used once at a time. The additional commands
can be combined to define a certain interesting range or error, respectively. A graph
(-9) can only be produced in conjunction with the parameter --sql_error. The GUI
usage is straight forward and self-explanatory. Individual widgets are explained in the
status bar or if the mouse hovers for more than 3 seconds on a widget with tool tips,
which are faded in. The created graph can be saved as a postscript file. A dialog is
leading through the saving process. As long as an additional dialog or a message box is
not closed any other button within all windows of the application are disabled. Please
close these additional windows first to enable those buttons again. If the graph does not
deliver the needed information, please close the windows and specify the parameters

accordingly to gain the needed information.

Figure [C.T| depicts the main window.

117

C Software User Manuals C.3 Virtualiser

Diagram "Error Number - Frequency”

o
]

“pzmocomBT

50 4z a0 gy

N0 R0l .o

afer 1 g | 35 | 110 | 113 I
111 999999

0 104
ERROR WUMEER

110 (37)

1m @)

13 (22)

999999 (386)

change order in listhox, currently ordered by "error number”

emror plot save as quit

FIGURE C.1: Main Window

The bar chart graph shows all occurring errors. The error number is used as x-axis
description. The error frequency is displays on top of each bar. The list box contains
the same information, error number and in brackets the frequency. If more information
about a certain error required, a error can be selected within the listbox. The button
“plot” will then generate a new window like displayed in figure (C.2] The order within
the listbox can be changed with the dropdown menu. The listbox can be ordered error

number or error frequency.

118

C Software User Manuals C.3 Virtualiser

=]c) X 06068

Diagram "Frequency - Date” - Error: -1017 - Range: 2005-10-18 - 2005-10-22

F
R
E
i
Yo . -
M
C
¥

i ; ;

10-13 [10-21
10-18 10-20 10-22

DATE

2005-10-18 (2)
2005-10-20 (1)
2005-10-21 (1)
2005-10-22 (1)
change order in listhox, currently ordered by "frequency”

frequency plot save as quit.

FIGURE C.2: Error Window I

The design of the window is similar to the main window. Displayed is line diagram
which shows the error frequency over a certain period of time (days). In the listbox
only those days appear where an error was reported. A day can now be chosen and

Figure|C.3| presents the final window. Multiple windows are possible.

=]} X 0606
Diagram "Frequency - Time" - Date 2006-09-21

3

F -

Ro2

E

Q

U

E

H

C

-)
0 f } t } f H t t f t H

1 s s Ty bg T bas bas Taz s |ozn |23

0 2 4 [8 16 18 20 22

10 12
TIME OF DAY {hrs)

save as quit.

save diagram as posiscript file

FIGURE C.3: Error Window II

119

C Software User Manuals C.3 Virtualiser

The design is again similar. The window shows a line diagram of one particular er-
ror on one particular day. There is no listbox, because another zoom is not possible

anymore. Multiple windows are possible.

C.3.1 Examples

For a better understand some simple examples are given:

1. python gui.py -c¢ config_gui.ini --sql_project

show all projects

2. python gui.py -c config_gui.ini --sgl_host

show all hosts and the corresponding projects

3. python gui.py -c¢ config_gui.ini --sql_error
--start_date 01.01.2005 --end_date 01.03.2005
--ip 134.225.4.18
show all errors of SRB system with the IP 134.225.4.18 between 01.01.2005 and
01.03.2005

4. python gui.py -c¢ config_gui.ini --sql_error
--start_date 01.01.2005 --project mySRBproject
show all errors between 01.01.2005 and now for the project “mySRBproject”

5. python qgui.py -c config_gui.ini --sql_error
--start_date 22.10.2005 --end_date 22.10.2005
--start_time 12:00:00 --end_time 18:00:00
-—-ip 127.0.0.1 --file test.txt
show all errors on the 22.10.2005 between 12 h and 18 h on localhost and save

output in file “test.txt”

6. python gui.py -c¢ config gui.ini --sqgl_error_freq
-—error -1023 --ip 127.0.0.1 -g
show error frequency for the error -1023 from host 127.0.0.1 and display dia-
gram (graph)

120

C Software User Manuals

C.4 Remote Controller

C.4 Remote Controller

The Remote Controller can be used to influence the parsing behaviour of the server.

The application is a console application only and requires Python 2.2.3 or higher, and
M2Crypto 0.13. The parameter to control the server are presented in Table

TABLE C.6: Remote Controller Parameter

Parameter Explanation

general parameters
-h or —help print help
-c or —config defines configuration file
-g or —graph show output additionally as a diagram
—nocolor no coloured console output

server commands

—rpc_status show actual setting of RPC (disabled/enabled)
—disable_rpc disable RPC
—enable_rpc enable RPC
—shutdown shutdown server

—change_interval <int>
—keyword _status
—add_keyword <string>
—delete_keyword <string>
—ignore_error_status
—add_ignore_error <int>

—delete_ignore_error <int>

change parsing interval of server

show actual setting of keywords

add keyword to keyword list

delete keyword in keyword list

show actual setting of “ignore_error”
add error, which the parser should ignore

delete error, which the parser is ignoring

additional parameters

—ip <ip>
—port <int>

host IP (e.g. 127.0.0.1)

port, where the server is listening

The server commands can only be used once at a time. The additional commands can

be combined. The necessary configuration file contains only name and path for the

121

C Software User Manuals C.4 Remote Controller

certificate file and certificate authority file.

Before the application is executed with
python admin_server -c configuratin_file.ini [parameter]

the configuration file should be adjusted. After the application was started the required
action is executed and the server’s answer is displayed. The application terminates

after the task is processed.

C.4.1 Examples

For a better understand some simple examples are given:

1. python admin_server -c config_admin_server.ini --rpc_status
--ip 134.225.4.18 --port 6000
request RPC status from server with IP 134.225.4.18 which listens on port 6000

2. python admin_server -c config_admin_server.ini
--change_interval 60 --ip 134.225.4.18 --port 6000

change parsing interval time to 60 minutes at server with IP 134.225.4.18

3. python admin_server -c config_admin_server.ini
-—delete_keyword status ——ip 134.225.4.18 —-port 6000
delete keyword “status” in keyword file at server with IP 134.225.4.18

4. python admin_server -c config_admin_server.ini
--add_ignore_error 5,6 --ip 134.225.4.18 --port 6000
add new error numbers 5 and 6 which are to be ignored at server with IP 134.225.4.18

5. python admin_server -c¢ config_admin_server.ini —-shutdown
-—ip 134.225.4.18 —--port 6000
shutdown server with IP 134.225.4.18

122

C Software User Manuals C.5 GZ Parser

C.5 GZ Parser

The GZ Parser application is used to process older SRB log files which are only avail-
able as compressed files. The application requires Python 2.2.3 or higher. The param-

eters are displayed in Table |C.7

TABLE C.7: GZ Parser Parameters

Parameter Explanation

-h or —help print help

-c or —config defines configuration file

-v or —verbose activates printing of messages [debug option]

Before the application is started with
python gz_parser.py -c configuration_file.ini [-v | -h]

the configuration file has to be adjusted. Keywords can be defined in the keyword file.

Table [C.§]explains the items in the configuration file.

TABLE C.8: Configuration File GZ Parser

Parameter Explanation

Section Files

keyword name of keyword file
Section Path
path_srb_gz path of SRB server gz log files
path_xml_file location (path) of the XML file within the server
environment
path_keyword path of keyword file

Section Misc

ignore_error some error numbers might not be interesting, so
the errors should be ignored, e.g. 0, 3, 5 (comma

separated list)

123

C Software User Manuals C.5 GZ Parser

It should be paid attention to the fact that the XML file path is very important. Only if
the application places the XML file within the server XML directory, the client is able
to fetch the files.

124

LS N N

© ® 9 o

20
21
22
23
24
25
26

Appendix D

Source Code

D.1 Server

D.1.1 Module start server.py

LISTING D.1: Module start_server.py

#!/usr/

rrzs

bin/env python

This module is the log file parser server start script.

Reading University

MSc in Network Centered Computing

a.weise - a.weisefreading.ac.uk - December 2005

rrvs

import
import
import
import
import

from utils_server import LoadConfig,

server_classes
sys, os, time,
socket
fentl
struct

class WorkingServer:

rrzs

g

etopt

check_ip ,

This is the main class for the server.

rrs

def

__init__(self,

rrzs

Constructor

rrzs

self._verbose

config_data ,

verb

config_dir ,

usage_exit

verb) :

125

27
28
29
30
31
32

35
36
37
38
39
40
41

4
43
44
45
46
47
48
49
50
5

52
53
54
55
56
57
58
59
60
6

62
63
64
65
66
67
68
69
70
7

72
73
74
75
76

D Source Code D.1 Server

config = config_data

self. _workingpath = os.getcwd ()

self. _server_certificate = config.get("files.server_certificate")

self . _server_certificate_path = config.get("path.path_server_certificate™)

self. _server_certificate_path = self. _server_certificate_path.rstrip("/")

if (self. _server_certificate_path == 7/ or self._server_certificate_path ==
None) :
self. _server_certificate_path = self._workingpath

else:

self._server_certificate
if (-1 != self._server_certificate_path.find("/", O,

first character
pass
else:

self. _server_certificate_path
_server_certificate_path

self. _server_ca = config.get("files.server_ca")
self. _server_ca_path = config.get("path.path_server_ca")

self. _server_ca_path = self._server_ca_path.rstrip("/")

if (self._server_ca_path ==

self. _server_ca_path =

else:
self. _server_ca = self.
first character
pass
else :

self._server_ca_path

self._srb_log = config.get("files.srb_log")

self._srb_log_path = config.get("path.path_srb_log")

self._srb_log_path = self._srb_log_path.rstrip("/")

if (self._srb_log_path == 7’ or self._srb_log_path == None):
self._srb_log_path = self._workingpath

else :

self. _srb_log = self._srb_log.strip ()
if (-1 != self._srb_log_path.find("/", O,

first character
pass

else:
self._srb_log_path

self._gz_path = config.get("path.path_gz")

self._gz_path = self._gz_path.rstrip("/")

if (self._gz_path == 77 or self._gz_path == None):
self._gz_path = self._workingpath

else:

if (-1 != self._gz_path.find("/", O,

first character

pass

._server_certificate .strip ()

self. _workingpath+"/"+self .

self. _server_ca_path

self. _workingpath

_server_ca.strip ()
if (=1 != self._server_ca_path.find("/",

self . _workingpath+"/"+self. _server_ca_path

self. _workingpath+"/"+self . _srb_log_path

D Source Code D.1 Server

77 else:

78 self._gz_path = self._workingpath+"/"+self._gz_path

79

80 self. _keyword_name = config.get("files.keyword")

81 self. _keyword_path = config.get("path.path_keyword")

82 self. _keyword_path = self. _keyword_path.rstrip("/")

83 if (self. _keyword_path == 7’/ or self._keyword_path == None)

84 self. _keyword_path = self._workingpath

85 else:

86 self._keyword_-name = self._keyword_name. strip ()

87 if (-1 != self._keyword_path.find("/", 0, 1)):

88 # first character /"

89 pass

90 else:

91 self. _keyword_path = self._workingpath+"/"+self._keyword_path

92

93 self._xml_file = "client_log.xml"

94 self. _xml_file_path = os.getcwd ()+"/xml_client"

95

96 try:

97 self. _interval = int(config.get("misc.minute"))

98 except ValueError:

99 print "Please check the configuration in the config file (section: misc,
item: minute). It should have the following pattern:\nminute = <int>"

100 os. _exit(—1)

101 try:

102 self. _port = int(config.get("misc.port"))

103 except ValueError:

104 print "Please check the configuration in the config file (section: misc,

item: port). It should have the following pattern:\nport = <int>"

105 os._exit(—1)
106 if (self._port < 1024 or self._port > 50001):
107 print "A server port is out of range. \nPlease check the configuration

file and make sure the server port lies between 1025 (inclusive) and
50000 (inclusive)!\n\n"

108 os._exit(—1)

109

110 #check if the configuration if correct

111 if (0 == os.path.exists(self. _server_certificate_path+"/"+self.

_server_certificate)):
112 print "Could not locate server certifiate under $%s !\nMaybe change
configuration file and try again!\n\n" % self.

_server_certificate_path

113 os._exit(—1)

114

115 if (0 == os.path.exists(self._server_ca_path+"/"+self. _server_ca)):

116 print "Could not locate server ca certificate under $%s !\nMaybe change

configuration file and try again!/\n\n" % self._server_ca_path

117 os._exit(—1)
118
119 if (0 == os.access((self._srb_log_path+"/"+self._srb_log), 4)): # 4 R.OK

127

D Source Code D.1 Server

120 print "Could not access SRB server log file under %s !\nMaybe change

configuration file and try again!/\n\n" % self._srb_log_path

121 os._exit(—1)

122

123 if (0 == os.path.exists(self._xml_file_path)):

124 print "Creating path \"$s\"\n\n" % self._xml_file_path

125 os.mkdir(self. _xml_file_path)

126

127 self . _share = server_classes .Mutex ()

128

129 self._keyword = server_classes.get_-keywords(self._keyword_path+"/"+self.

_keyword_name)

130

131 error = config.get("misc.ignore_error™")

132

133 self._ip = config.get("misc.interface")

134

135 error = error.strip ()

136 error = error.strip(”,")

137 self . _ignore_error = error.split("”, ")

138 for i in range(len(self._ignore_error)):

139 if self._ignore_error[i] != 77:

140 try :

141 self. _ignore_error[i] = int(self._ignore_error[i].strip())

142 except ValueError:

143 print "Please check the \"ignore_error\" list in the config file
(section: misc). It should have the following pattern (comma
separeted list of integer):\nignore_error = <int>,<int> "

144 os._exit(—1)

145 else:

146 del self._ignore_error[i]

147

148 self. _configfile = config_dir

149

150 self. _rpc = server_classes .RPC(self._verbose, self._share, self._configfile ,

self. _interval , self._keyword_path, self._keyword_.name, self.
_xml_file_path)

151

152 def establish_connection(self):

153 s

154 establish a working connection using MySSLServer

155 s

156 cert = self. _server_certificate_path+"/"+self. _server_certificate

157 ca = self._server_ca_path+"/"+self._server_ca

158 self. _serverobject = server_classes.My_SSL_Server(cert, ca, self._verbose)

159 ip = self.get_ip-address(self._ip)

160 if (0 == check.ip(ip)):

161 self. _serv = self._serverobject.start_server (ip, self._port)

162 else:

163 print "Could not start the server. (IP: \"%s\")" % ip

164 os._exit(—1)

165

128

166
167

168
169
170
171
172
173
174

175
176
177

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

198

199

200
201

202

203

204

205
206

D Source Code

D.1 Server

def

def

def

start thread for parsing log file

workerthread = server_classes.MyParserThread(self._share ,
self._gz_path, self._srb_log_path,
_ignore_error , self._xml_file_path ,
self. _keyword_path+"/"+self._keyword_name) ,

workerthread . setName ("parser")
workerthread . start ()

print "Started!\n\n"

self. _interval ,

self._srb_log , self._keyword, self.

self. _xml_file, self._configfile , (

get_ip_address (self , network_interface):

rrzs

self . _verbose)

Uses the Linux SIOCGIFADDR ioctl to find the IP address associated with a
"eth0".

network interface, given the name of that interface,

e.g.

source: http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/439094

modified by a.weise (December 2005)

rrs

s = socket.socket(socket.AF_INET,
try:

socket .SOCK_DGRAM)

ip = socket.inet_ntoa(fcntl.ioctl(

s.fileno (),
0x8915, # SIOCGIFADDR

struct .pack(’256s’, network_interface[:15])

)[20:24])
return ip
except IOError, e:
return e

register_functions (self):

rrs

register all the rpc - functions

s

self. _serv.register_function (self

self. _serv.register_function (self

self._serv.register_function (self
disable_rpc_calls’)

self. _serv.register_function (self
enable_rpc_calls’)

self. _serv.register_function (self
)

self. _serv.register_function (self

self._serv.register_function (self
rpc_update_configuration’)

self. _serv.register_function(self
rpc_update_keyword_file’)

self. _serv.register_function (self
rpc_check_availabitity’)

self. _serv.register_function (self.

rpc_interval_status’)

run_server (self):

._rpc.
._rpc.

._rpc

. .rpc.

. .Ipc.

. .Ipc.

..rpc.

. .rpc

..rpc.

_rpc.

rpc_stop.server , ’stop_server’)

rpc_status , ‘rpc_status’)

.rpc_disable_rpc_calls

rpc_enable_rpc_calls ,

rpc_get_my_xml_file ,

5

7

7

‘get_my_xml_file’

rpc_get_file_list , ‘get_rfile list’)

rpc-update_configuration ,

rpc-check_availabitity ,

rpc_interval_status ,

’

.rpc_update_keyword_file ,

7

7

7

129

D Source Code D.1 Server

207 rry

208 handle all client requests

209 o

210 try:

211 #serv.serve_forever ()

212 if self._verbose == 1:

213 print "\nSimple SSL XML RPC Server is running\n"

214 while (1):

215 if self._verbose == 1:

216 print "$s -> waiting for request" % time.ctime ()

217 self._serv.handle_request(self._serv)

218 except KeyboardInterrupt:

219 # if the server is not running as a daemon shutdown with Ctrl+c is
possible

220 if self._verbose == 1:

221 sys.stdout.write ("\n\nShutdown !!!\n\n")

222

223 command = "./stop_server"

224 0s.system (command)

225

226

207 HHARBHARH ARG HRRGHRRHHRYHAR ARG A ARG ARG HRRGHRR B ARG A AR ARG ARRA R ARG ARG HAR ARG RS

228

229
230 def daemonize(verbose, stdout = ’/dev/null’, stderr = None, stdin = ’/dev/null’,
pidfile = None, startmsg = ’Server daemon started with pid %s’):

231

232 rrr

233 This function creates a daemon by forking the current process. The parameters
stdin, stdout, and stderr are file names which substitute the standard err-,
in-, out- output. This parameters are optional and point normally to /dev/
null. Note that stderr is opened unbuffered, so if it shares a file with
stdout then interleaved output may not appear in the order that you expect.

234

235 source: http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/66012

236 modified by a.weise November 2005

237 rrs

238

239 # first fork => fork creates first child—process

240 try:

241 pid = os.fork ()

242 if (pid > 0):

243 sys.exit(0) # close first parent—process

244 except OSError, e:

245 sys.stderr.write ("fork #1 failed: (%d) %s\n" % (e.errno, e.strerror))

246 sys.exit(l)

247

248 os.umask (0)

249 os.setsid ()

250

251 # second fork

252 try:

130

D Source Code D.1 Server

253 pid = os.fork ()

254 if (pid > 0):

255 sys.exit(0) # close second parent—process

256 except OSError, e:

257

258 sys.stderr.write ("fork #2 failed: (%d) %s\n" % (e.errno, e.strerror))
259 sys.exit(l)

260

261 # open standard in and out and print standard message

262 if (not stderr):# if not stderr given => take stdout—path
263 stderr = stdout

264

265 if verbose == 1:

266 si = file(stdin, "r’)

267 so = file (stdout, ’w+’) # w —> overwrite old log content
268 se = file (stderr, ’“w+’, 0)

269 pid = str(os.getpid())

270 sys.stderr.write ("\n%s\n" % startmsg % pid)
271 sys.stderr. flush ()

272 if pidfile:

273 file (pidfile ,’w+’).write("%s\n" % pid)
274

275 # redirect standard in and out to files

276 os.dup2(si.fileno (), sys.stdin.fileno())
277 os.dup2(so.fileno (), sys.stdout.fileno ())
278 os.dup2(se.fileno (), sys.stderr.fileno ())
279

W F i a et dddddadddaddaddiadddaddaddaaddiaddaddiaddaddssddsadd
281
282 def start():

283

284 rrr

285 START THE APPLICATION

286 rrs

287 configfile = ""

288 verbose = 0

289 daemon = 0

290

291 try:

292 opts, args = getopt.getopt(sys.argv[l:], “c:vhd’, [’config=’, ’'verbose’, '

help’, ’daemon’])

293 for opt, value in opts:

294 if opt in (’/-h’,’--help’):

295 msg = "\n\t\t-—————————~ Help —————————- \n\n\n"\

296 "-c or —--config\t-> defines config file, if no config file
given, default values are used\n"\

297 "-v or --verbose\t-> activates printing of messages [debug
option]\n"\

298 "-d or --daemon\t-> daemonize the server\n"\

299 "-h or --help\t-> print this help\n\n"

300 usage_exit(sys.argv[0], msg)

301 if opt in (’/-c¢’,’--config’):

131

D Source Code D.1 Server

302 value = value.replace("=", "")

303 configfile = os.getcwd()+"/"+value

304 if opt in (’-v’,’--verbose’):

305 verbose = 1

306 if opt in (’-d’, "--daemon’):

307 daemon = 1

308 except getopt.error, e:

309 usage_exit(sys.argv[0], e)

310

311 # load config file or default values

312 if (configfile != ""):

313 # check if file exists

314 if (1 == os.path.exists(configfile)):

315 config = LoadConfig(configfile)

316 else:

317 # if file NOT exists terminate program

318 print "Sorry, the given file does NOT exist !\nPlease try again!/\n\n"

319 os._exit(—1)

320 else:

321 msg = "\nNo configuration file spezified !\n"

322 usage_exit(sys.argv[0], msg)

323

324 print "\n\n—-—---—-------—————— SRB LOG FILE PARSER [SERVER]
777777777777777777 \n\n"

325 print "Starting ..."

326

327 worker = WorkingServer(config, configfile , verbose)

328

329 if daemon == 1:

330 if verbose == 1:

331 #if verbose then write messages in log file

332 daemonize (verbose , stdout = ‘daemonize.log’)

333 else:

334 # quit mode

335 daemonize (verbose)

336 else:

337 pass

338

339 worker. establish_connection ()

340 worker.register _functions ()

341 worker. run_server ()

342

343

344 if __name__. == /__main_ ’:

345

346 start ()

D.1.2 Module server classes.py

132

ENR S N

e ® 9 o W

37
38

39
40
41
42
43
44
45
46
47

D Source Code D.1 Server

LISTING D.2: Module server_classes.py

#!/usr/bin/env python

rrzs

This module contains all necessary classes and functions for the gz_parser.py and srb

log file parser —-> start_server.py .

Reading University
MSc in Network Centered Computing

a.weise - a.weiselreading.ac.uk - December 2005

rros

ssl connection
from SimpleXMLRPCServer import SimpleXMLRPCServer, SimpleXMLRPCRequestHandler
from M2Crypto import SSL

misc

import os, time, stat

regular expressions

import re

utilities
from utils_server import delete_file , list_to_string , get_.keywords, LoadConfig, find

threads
import thread
import threading

import socket
AR R R CLASS SimpleSSLXMLRPCServer — ################HH

class SimpleSSLXMLRPCServer(SSL.SSLServer, SimpleXMLRPCServer) :

rrzs

This class 1is derived from SSL.SSLServer and SimpleXMLRPCServer.
rr s
def __init__(self, ssl_context, address, verbose, handler=
SimpleXMLRPCRequestHandler) :
sy
Constructor overwrites the init function of the SimpleXMLRPCServer and
replace it with the secure SSLServer.
SSL.SSLServer. __init__(self, address, handler, ssl_context)
self . funcs = {}
self.logRequests = 0
self.instance = None
self . _verbose = verbose

def handle_request(self, serv):

rrzs

133

48
49
50
51
52
53

54
55
56
57
58
59
60

=)

1
62

=)

3
64
65
66
67

69
70
71
72
73
74
75
76
77
78
79
80

81
82
83

84
85
86

87
88
89
90
91
92

93
94

D Source Code D.1 Server

Handle one request by passing it on the a thread.

rrzs

try:
request , client_address = self.get_request()
if self._verbose == 1:
print "$s -> request accepted from $s..... " % (time.ctime (),

client_address [0])

except socket.error:
return

if self.verify_request(request, client_address):
thd = MyClientThread (request, client_address , serv)
thd . start ()

Au##AAAARRRRR A #AA CLASS My _SSL_Server ##H#AAH#H#HHHAAAHIH

class My_SSL_Server:

rrs

provide functions for the server class

rrs

def

def

def

__init__(self, server_cert, ca_cert, verbose):

rr

Constructor

rr

self. _server_certificate = server.cert

self. _ca_certificate = ca_cert

self . _verbose = verbose

start_server (self , address, port, xmlrpcserver=SimpleSSLXMLRPCServer)

rrvs

Start the actual server using SSL:

sslv23 —> compatibility mode, can handle any of the three SSL/TLS protocol
versions

server.pem —> server certificate including server RSA private key

ca.pem —-> root certificate

SSL.verify none —-> no request that the client has to send his certificate as
well

s

create SSL context

ctx = self.init_context(’sslv3’, self._verbose, self._server_certificate ,
self. _ca_certificate , SSL.verify_none)

create server object

server = xmlrpcserver(ctx, (address, port), self._verbose)

return server object

return server

init_context(self, protocol, verbose, certfile , cafile, verify, verify_depth
=10):

rrs

This function is used to generate the SSL context:

134

95
96
97
98
99
100
101
102
103
104
105
106
1

S
3

108
1

=)

9
110
111

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
1

)

4
135
136
137
138

139
140
141

142
143
144

D Source Code

D.1 Server

#unn##ppnpnnnnnnn# CLASS MyClientThread — #A###HHH#AAAHAHAREH

- verify depth -> chain depth

rrzs

ctx = SSL.Context(protocol)

ctx.load_cert_chain(certfile)

create

ctx.load_verify_locations (cafile)

ctx.set_client_CA _list_from_file (cafile)

ctx.set_verify (verify ,

verify_depth)

ctx.set_session_id_ctx (’server’)

#if verbose ==

ctx.set_info_callback ()

return ctx

show handshake

class MyClientThread (threading . Thread):

rrvs

This class presents a client,

rrs

def

def

#unn##nnn R #s#### CLASS LogFileParser

__init__(self,

rrs

Constructor
self. _request =
self._client =

self . _serv = se

request ,

request
address

rv_object

address ,

threading . Thread. __init__(self)

run(self):

rrzs

S€rv._

context object

load server certificate chain

verfiy options

set session id

object):

This function overrides the standard run method.

rrzs

try:
self . _serv.
self . _serv.
except:

self . _serv.

self . _serv.

class LogFileParser:

rrvs

process_request(self._request,

close_request(self._request)

handle_error(self. _request,

close_request(self. _request)

HERAHHAAAAAAR R AR Y

which connects to the server.

self._client)

self. _client)

information —— debug

This class provides all the neccessarey tools to parse and work up to logfile of

def

the SRB-System.

__init__(self,
xml_file_name ,

rrzs

Constructor

rrzs

logfilepath ,
verbose) :

keywords ,

ignore_error ,

xml_file_path ,

135

D Source Code D.1 Server

145 self._verbose = verbose

146 self . _ignore_error = ignore_error

147 self . _keywords = keywords # keywords

148 self. _logfile_path = logfilepath

149 self . _client_log_file = "%$s/%s" % (xml_file_path, xml_file_name) # name and

path of client log file

150 self. _client_log_file_fd = —1 # client log file — file descriptor

151 self. _first_line = range(l5) # save first 15 lines of log file

152 self. _last_byte_number = 0 # save last byte number which was parsed

153 self._line_number =1 #save last line number which was parsed

154

155 if (0 == os.path.exists(self._logfile_path)):

156 print "Could not locate log file path under %s !\nMaybe change
configuration file and try again!/\n\n" % self. _logfile_path

157 os._exit(—1)

158

159 def _fetch_first_lines (self, file_name):

160 sy

161 This function returns the first 15 lines from current logfile without saving

them anywhere.

162 rry

163 try:

164 log_file_fd = open(file_name , "r")

165

166 listline = range(15)

167 log_file_fd .seek (0) #set cursor on first position

168 for i in range(15):

169 listline[i] = log_file_fd.readline ()

170 log_file_fd.close ()

171 return listline

172 except IOError:

173 print "Could not open file -> ", file_name

174

175 def set_first_lines (self, file_name):

176 sy

177 This function saves the first 15 lines of the log file into the member
variable.

178 84

179 try:

180 log_file_fd = open(file_name, ‘r’)

181 log_file_fd .seek (0) #set cursor on first position

182 for i in range(15):

183 self. _first_line[i] = log_file_fd.readline ()

184 log_file_fd .close ()

185 except IOError:

186 if self._verbose == 1:

187 print "$s -> Could not open file —-> \"%s\"" % (time.ctime(),

file_name)

188

189 def get_first_lines (self):

190 sy

191 This function returns the member variable _first_lines.

136

192
193
194

196
197

198
199
200
201
202
203
204
205
206

208
209
210
211

233
234

D Source Code D.1 Server

def

def

def

rrs

return self. _first_line

test_first_lines (self , file_name):
rrs
This function compares the first 15 lines of a log file and return 0 if they

are the same, otherwise -1.

rrzs

listline = self. _fetch_first_lines (file_name)
z =0
while (z<15):
if(listline == self. _first_line):
z += 1
else:

return —1

return 0

find_size_last_message_tag(self, fd, msg_tag):

rr

This function find out, how many bytes the last message tag needs. This
function was necessary, because this new xml messages have to be added
into the client xml file. Since the creating of this file is not very
straightforward using known techniques like sax or dom, the last tag gets

deleted, the new messages added and the last tag writen again.

fd = file descriptor of the file
msg_tag = message tag to search for
#set cursor back

zZ = —

fd.seek (0, 2)

while (1) :
fd.seek(z, 2)
tag = fd.read ()

if (-1 != tag.rfind(msg_tag)):
return z

z —=1

if —15 == z:

message tag was not part of the file

return 0

analyse_log_file (self, parser_file_name , file_time=None):

takes the templog file and goes through each lines and searches for keywords,
if keywords are found, the line and the two lines before and after are
dumped into a xml file, which the client can collect. This function uses
the system function write to create the xml file. The dom function were

to ineffectiv and sax unflexible.

parser_file_name = file name of the file, which needs to be parsed

137

235
236

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

258
259
260
261
262
263
264

266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

D Source Code D.1 Server

rrs

determine year of paser file, needed for extract time, since log file
content does not provide a year
if file_time != None:
tupel = time.gmtime(file_time)
else:
status = os.stat(parser_file_name)
file_time = status[8]

tupel = time.gmtime(file_time)

pf-year = time.strftime ("$Y ", tupel)

byte_count = 0
interrupt = 0
z =0

try:
self. _client_log_file_fd = file(self. _client_log_file , ’r+’)

except IOError:
create new client log file
self. _client_log_file_fd = open(self. _client_log_file , ‘w’)

xml_header = "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"yes
\"2>\n"

self. _client_log_file_fd.writelines (xml_header)

self._client_log_file_fd.writelines ("<message>\n")

self._client_log_file_fd.writelines ("</message>\n")

self. _client_log_file_fd.close ()

self. _client_log_file_fd = file(self._client_log_file , "r+’)

set cursor in file

x = self.find_size_last_message_tag(self. _client_log_file_fd , "</message>")

self. _client_log_file_fd .seek(x, 2)
shorten = self. _client_log_file_fd.tell ()
delete last </message>

self. _client_log_file_fd.truncate (shorten)
self. _client_log_file_fd.seek(0, 2)

#open log file
log_file = parser_file_name

try:
log_file_-fd = open(log-file, "r")
log_file_fd .seek(self._last_byte_number)

except IOError:
if self._verbose == 1:
print "%s -> could not open srb log file -> %s" % (time.ctime(),

log_file)

138

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

328
329
330
331

332

D Source Code

D.1 Server

return —1

if == 1:

self. _verbose
print "%s ->

starttime time . time ()
while (interrupt == 0):
read line

content

if (content ==

II):
interrupt = 1

break

if 0 == len(self._k
check 0
else:
check
content)

if (0 == check):

extract error

error_number

self. _test_keywords (self._keywords,

start parsing " % (time.ctime())

log_file_fd .readline ()

eywords) :

len(self._keywords)—1,

number

self. _extract_error_number (content)

if (None == error_number):

error_number

— nmn

temp
else:
temp int(

if (None == find(temp,

— n_n

error_number)

self. _ignore_error)):

line_number_string = "8d" % self._line_number
delete whitespace
content- = content.rstrip ()
date_time = self._extract_time (content, pf_year)
if (date_time == —1):

date_time = ["", ""]

save current byte count

byte_count = log_file_fd.tell ()

back = —1

read = 0

while (1) :

try:
find time pattern by going back character by

character
log_file_fd .seek(back,
back=x(—1)
tag log_file_fd .read(read)
if (None re.search (” "NOTICE: *[A-Z][a-z] {2}
+[0-9]{1,2} +[0-9]{2}:[0-9](2}:[0-9]{2}:",
date_time

1)

read

tag)):
pf_year)

self. _extract_time (tag,

139

D Source Code D.1 Server

333 break

334 back = back-1

335 except IOError:

336 # no time available

337 date_time [0] = time.strftime ("8Y-%m-%d", tupel)
338 date_time [1] = time.strftime ("$H:8M:8S", tupel)
339

340 break

341

342 #restore byte count

343 log_file_fd .seek(byte_count)

344

345 z += 1 # entry counter

346

347 if —1 == self.start_entry (‘entry’):

348 interrupt = 1

349 break

350 if —1 == self.write_entry(’date’, date_time[0]):

351 interrupt = 1

352 break

353 if —1 == self.write_entry (’time’, date_time[l]):

354 interrupt = 1

355 break

356 if —1 == self.write_entry (’error_number’, error_number):
357 interrupt = 1

358 break

359 if —1 == self.write_entry (’error_string’, content.):

360 interrupt = 1

361 break

362 if —1 == self.write_entry (’linenumber’, line_number_string):
363 interrupt = 1

364 break

365 if —1 == self.end_entry(’entry’):

366 interrupt = 1

367 break

368

369 self. _line_number += 1

370 if self._verbose == 1:

371 print "$s -> end parsing " % (time.ctime())

372 endtime = time.time ()

373 if self._verbose == 1:

374 print "%s —> parsing time: %s" % (time.ctime (), (endtime—starttime))
375 self.end_entry (“message’)

376 if self._verbose == 1:

377 print "%s -> %d errors found\n" % (time.ctime (), z) #— debug —
378 # save last byte number

379 try:

380 self. _client_log_file_fd.close ()

381 except IOError, e:

382 if self._verbose == 1:

383 print "%s -> Problem closing XML file: \"%s\" !" % (time.ctime (), e)
384 self. _last_byte_number = log_file_fd.tell ()

140

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424

425
426
427
428
429
430
431
432
433
434

D Source Code D.1 Server
def start_entry (self, name):
o
This function inserts a start tag into the XML file. (name = tag name)
s
start_tag = "<%s>\n" % name
try:
self. _client_log_file_fd.write(start_tag)
return 0
except IOError, e:
if self._verbose == 1:
print "$s -> Problem writing XML file: \"$s\" !" % (time.ctime (), e)
return —1
def write_entry (self, tagname, content):
rrs
This function inserts an entry into the xml file.
tagname = tag name
content = message between start and end tag
sy
if len(content) < 50000000:
#find all not allowed character old: [\x09\x0a\x0d\x20—\xd7]=
bad_character = re.sub(’[\x09\x0a\x0d\x20-\x25\x27-\xd7]*", "", content)
replace each not allowed character with 7?7
for i in range(len(bad_character)):
if bad_character[i] == 7\x00":
delete NUL character
content = content.replace(bad_character[i], ’’)
else:
content = content.replace(bad_character[i], "?")
entry = "<%$s5>%$s</%s>\n" % (tagname, content, tagname)
try:
self. _client_log_file_fd . write(entry)
return 0
except IOError, e:
if self._verbose == 1:
print "$s -> Problem writing XML file: \"%$s\" !" % (time.ctime (),
e)
return —1
else:
entry = "<$s>LOGFILE ENTRY TO LONG !!!</%s>\n" % (tagname, tagname)
try:
self. _client_log_file_fd.write(entry)
return 0
except IOError, e:
if self._verbose == 1:
print "$s -> Problem writing XML file: \"%$s\" !" % (time.ctime (),
€)

141

435
436
437

439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

460
461
462
463
464
465

467
468

470
471
472

474
475
476
477
478
479
480
481
482
483
484

D Source Code D.1 Server

def

def

def

return —1

end_entry (self , name):

rrs

This function inserts an end tag into the XML file. (name = tag name)
sy
endtag = "</%s>\n" % name
try:
self. _client_log_file_fd.write (endtag)
return 0
except [IOError, e:
if self._verbose == 1:
print "$s -> Problem writing XML file: \"%$s\" !" % (time.ctime(), e)
return —1

reset(self):

rrs

This function resets member variable, in case of a new log file.
rrs
self . _line_number = 1

self. _last_byte_number = 0

_test_keywords (self , keywordlist, amount_of_keywords, teststring):
sy
This is a recursive function, which tests if a list of keywords is part of a

string (AND relation). If all keywords found 0 is returned, otherwise -1

keywordlist = list of all keywords
amount_of_keywords = number of keywords in list

teststring = string, which needs to be investigated

return -1 if line is not interesting

return 0 if line is taken

rrs

if (amount_of_keywords == 0):
#last keyword check —1 != content. rfind(”NOTICE”)
if(2 == len(keywordlist[amount_of_keywords])):
if (-1 == teststring.rfind (keywordlist[amount_of_keywords][0])):
not in string go to next keyword
return 0
else:
if(—1 == keywordlist[amount_of_keywords][1]. rfind("/")):

check for NO keyword
temp = keywordlist[amount_of_keywords J[1]. strip("!")
if (—1 == teststring.rfind (temp)):
go on to next keyword
return 0
else:
return —1
else:

»y

there is no

142

D Source Code D.1 Server

485 if (—1 != teststring.rfind(keywordlist[amount_of_keywords
IIRNDDE

486 # string is there, go on to next keyword

487 return 0

488 else:

489 return —1

490 else:

491 if (-1 == teststring.rfind (keywordlist[amount_of_keywords][0])):

492 # not in string go to next keyword

493 return 0

494 else:

495 return —1

496 else:

497 if(2 == len(keywordlist[amount_of_keywords])):

498 if (-1 == teststring.rfind (keywordlist[amount_of_keywords][0])):

499 # not in string go to next keyword

500 return self._test_keywords (keywordlist, amount_of_keywords —1,
teststring)

501 else:

502 if(—1 == keywordlist[amount_of_keywords][1]. rfind ("!")):

503 # check for NO keyword

504 temp = keywordlist[amount_of_keywords J[1]. strip("/")

505 if (—1 == teststring.rfind (temp)):

506 # go on to next keyword

507 return self. _test_keywords (keywordlist ,

amount_of_keywords —1, teststring)

508 else:

509 return —1

510 else:

511 # there is no 7!”

512 if (—1 != teststring.rfind(keywordlist[amount_of_keywords

1)
513 # string is there, go on to next keyword
514 return self. _test_keywords (keywordlist ,
amount_of_keywords —1, teststring)

515 else:

516 return —1

517 else:

518 if (-1 == teststring.rfind (keywordlist[amount_of_keywords][0])):

519 # not in string go to next keyword

520 return self. _test_keywords (keywordlist, amount_of_keywords —1,
teststring)

521 else:

522 return —1

523

524 def update_keywords(self, keys):

525 sy

526 This function updates the member variable keywords.

527

528 keys = new keyword 1list

529 rry

530 self . _keywords = keys

143

D Source Code D.1 Server

531

532 def update_ignore_error(self, error):

533 o

534 This function updates the ignore_error 1list.

535

536 error = new ignore 1list

537 sy

538 self. _ignore_error = error

539

540 def _extract_time(self, time_string , year):

541 sy

542 This function takes a line from the logfile and extracts the time from there.

543 [

544 if (None == re.search(’ NOTICE: *[A-Z][a-z]{2} +[0-9]{1,2}
+[0-9]{2}:[0-9]{2}:[0-9]{2}:”, time_string)):

545 return —1

546 else:

547 listus = time_string.split(":")

548 zeit = year+listus [1]+":"+listus [2]+":"+listus [3]

549 time_tupel = time.strptime (zeit, "2Y b %d %X")

550 date_time = range(2)

551 date_time [0] = time.strftime ("%Y-%m-%d", time_tupel)

552 date_time[1] = time.strftime ("%H:8M:%S", time_tupel)

553 return date_time

554

555 def _extract_error_number(self, text):

556 sy

557 Thhis function takes a line from the logfile and extract the error number.

558 sy

559 match = re.search(’ (status/errno) #*= x—%\d{1,10}’, text)

560 if (None != match):

561 #if match then give me number

562 listus = match.string [match. start () :match.end ()]

563 listus = re.findall (’-x\d{1,10}’, listus)

564 if (1 == len(listus)):

565 return listus [0]

566 else:

567 return None

568 else:

569 return None

570

571 ###ARHHARGHARGAARE CLASS MyParserThread — ########H#ARH#ARSH

572

573 class MyParserThread (threading . Thread):

574 s

575 This class is used to create a thread, which is doing all the necessery work 1in
the background.

576 rr s

577 def __init__(self, shared, timus, gz_path, logfilepath , logfilename , keyword,
ignore_error , xml_file_path , xml_file_name , configfile , keywordfile, verbose)

578 rr s

144

579
580
581
582
583
584
585
586
587
588
589
590
591

593

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615

616
617
618
619
620
621
622
623
624
625

626
627

D Source Code

D.1 Server

def

Constructor

self . _keywordfile = keywordfile
temp = os.stat(self. _keywordfile)
self . _keywordfile_time = temp[8]
self. _configfile = configfile
temp = os.stat(self._configfile)
self. _configfile_time = temp[8]
self. _verbose = verbose

self._id = thread.get_ident ()
self. _shared_obj = shared
self . _interval = timus

self. _stop =0

threading . Thread. __init__(self)

self. _parser = LogFileParser (logfilepath , keyword,

self
self
self
self

run (

rrzs

This function overwrites the standard run method.

rrzs

xml_fil

. _logfi

._log_file_name = logfilepath+"/"+logfilename

.-gz_di
L -list

self):

e_path , xml_file_name , self._verbose)

lepath = logfilepath

ect = gz_path
= [] #save =x.gz files

ignore_error ,

block_counter = 0
while (1) :
acquire lock
if self._stop == 1:
print "$s -> working thread stopped !!!" % time.ctime ()
os._exit(0)
check if config file has changed
if (self._configfile != ""):

tem

if
check
if (sel

tem

if

p = os.stat(self._configfile)

self. _configfile_time !=

#if time has changed save new time

if self._verbose == 1:

print "$s -> config file has changed,

% time .ctime ()

self. _configfile_time =

temp [8]:

temp [8]

self. _refresh_configuration ()

if keyword file has chan
f._keywordfile != 77):

ged

p = os.stat(self._keywordfile)

self. _keywordfile_-time != temp[8]:

#if time has changed
if self._verbose == 1:

print "$s -> keyword file has changed,

" % time.ctime ()
self . _keywordfile_time =
self. _refresh_keywords ()

temp [8]

reading new values

reading new values

"

145

D Source Code D.1 Server

628
629 if(—1 == self._shared_obj.set_variable_parsing (1, self)):
630 # client is busy
631 block_counter += 1
632 time . sleep (Sxblock_counter)
633 if self._verbose == 1:
634 print "$s -> client busy" % time.ctime ()
635 if block_counter > 5:
636 if self._verbose == 1:
637 print "%s -> client needs a long time, miss this parsing
period” % time.ctime ()
638 block_counter = 0
639 time.sleep(self._interval x60)
640 else:
641 # no client busy
642 try :
643
644 # check if the first lines the same
645 if (0 == self._parser.test_first_lines (self._log_file_name)):
646 #if the first 15 lines still the same
647 if self._verbose == 1:
648 print "$s -> no log file rotation" % time.ctime ()
649 self. _parser.analyse_log_file (self. _log_file_name)
650 else :
651 if self._verbose == 1:
652 print "$s -> new log file" % time.ctime ()
653 # create gz file list
654 # empty list for the gz_files
655 self. _list = []
656
657 os.path.walk(self._gz_diect, self.parse_directory , self._list
)
658 if (0 < len(self. _list)):
659 self.gunzip(self. _list [0][1])
660 d = os.getcwd ()
661 try:
662 os.chdir(self._gz_diect)
663 self.gunzip(self. _list[0][1])
664 self. _parser.analyse_log_file (self._gz_diect+"/
temp_srbLog™")
665 delete_file ("temp_srbLog", self._verbose)
666 os.chdir(d)
667 except:
668 if self._verbose == 1:
669 print "%s -> could not find directory \"%s\"" % (
time.ctime (), self._gz_diect)
670 else:
671 pass
672
673 self. _parser.reset ()
674 self . _parser.set_first_lines (self._log_file_name)
675 self . _parser.analyse_log_file(self._log_file_name)

146

676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698

699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718

719
720
721
722
723
724
725

D Source Code D.1 Server

finally :

release lock

self. _shared_obj.set_variable_parsing (0, self)

time.sleep(self. _interval «60)#

if self._verbose == 1:

print "\n%s > ———————— parse —————— " % time.ctime () #— debug —

def _refresh_keywords(self):

rrzs

This function gets keywords from the keyword file !
rrs
if (1 == os.path.exists(self._keywordfile)):
keyword = get_keywords(self._keywordfile)
self. _parser.update_keywords (keyword)
return 0
else:
if file NOT use old configuration
if self._verbose == 1:
print "$s -> Sorry, the keyword file does NOT exist !\nUsing old
configuration!\n\n" % time.ctime ()
return —1

def _refresh_configuration(self):

rrrs

This function gets the needed information from the configfile!

rrzs

if (1 == os.path.exists(self._configfile)):

config = LoadConfig(self._configfile)
error = config.get("misc.ignore_error")
error = error.strip ()

error = error.strip(”,")

ignore_error = error.split(”,")

for i in range(len(ignore_error)):

check if there is an entry at all
if ignore_error[i] != 77:
try:
ignore_error[i] = int(ignore_error[i].strip())

except ValueError:
if self._verbose == 1:

print "$s -> \"ignore_error\" in the config file has NO

valid values, use old configuration" % time.ctime ()

return —1
else:
del ignore_error[i]

self. _parser.update_ignore_error(ignore_error)

return 0

147

D Source Code D.1 Server

726 else:

727 # if file NOT exists terminate program

728 if self._verbose == 1:

729 print "$s -> Sorry, the given config file does NOT exist !\nUsing old
configuration!\n\n" % time.ctime ()

730 return —1

731

732 def stop_thread(self):

733 e

734 Stop the thread

735 e

736 self._stop =1

737

738 def parse_directory(self, arg, dirname, fnames):

739 rrs

740 This function "walks" through a given directory and considers all srbLOGx.gz

files. The name and last modified time are saved in a list (2 dimensional
array). The function should be used with os.path.walk (path,

function_name, arg)!

741 v

742 d = os.getcwd ()

743 # change into log file directory

744 try:

745 os.chdir(dirname)

746 except:

747 if self._verbose == 1:

748 print "$s -> could not find directory \"%s\"" % (time.ctime (),
dirname)

749 return —1

750 # for each file

751 for f in fnames:

752 # check if file and if file is a log file e.g. srbLog.20051003.¢gz

753 if (not os.path.isfile(f)) or (None == re.search(’ “srbLog[_0-9.-]*.gz’, f

)):

754 continue

755 # get last modified time

756 date = os.stat(f)[stat.STMTIME]

757 # create tupel

758 tupel = (date, f)

759 # save last modified time and filename into am arrray (list)

760 self. _list.append(tupel)

761 # change back into the working directory

762 os.chdir(d)

763 # sort list ascending (aufsteigend)

764 self. _list.sort ()

765 # reverse list order, sorted descending (absteigend), the greater the time

number the younger the file

766 self. _list.reverse ()

767 return 0

768

769 def gunzip(self, filus, name_temp_file="temp_srbLog"):

770 sy

148

771

772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787

788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819

D Source Code D.1 Server

This function unzips a .9z file using the system tool gunzip. Make sure when
calling the function the file exists in this directory. The function
creates a temporary file and leave the orignal #*.gz file untouched!

rr

if (not os.path.isfile (filus)):
return —1

else:
command = "gunzip -c %s > %s" % (filus , name_temp_file)
try:
os.system (command)
return 0
except:

return —1

RARAARAARAH A HARAAARRR##H C LA S S MUTEX RRRAHAAHARRRRAHHAARRAAH

class Mutex:

rrs

This class makes sure that server and client are not accessing the same file at

rrs

the same time.

lock
_locked = threading.Lock()

def

def

__init__(self):

rrzs

Constructor

self.parsing = 0

self. _parsing_thread_id = 0
self.client = 0

set_variable_parsing (self, value, the_thread):

rrs

set variable parsing
Mutex . _locked . acquire () # lock
self. _parsing_thread_id = the_thread

if self.client == 0:
#set variable
self.parsing = value
Mutex . _locked . release ()
time . sleep (1)
if value == 0:
reset parsing thread identity
self . _parsing_thread_.id = 0
return 0
else:
Mutex . _locked .release () # release lock

149

D Source Code D.1 Server

820 time . sleep (1)

821 return —1

822

823 def set_variable_client(self, value):

804 s

825 set variable client

226 s

827 Mutex . _locked . acquire () # lock

828 # if client is not fetching the file

829 if self.parsing ==

830 #set variable

831 self.client = value

832 #print “client variable gesetzt”

833 Mutex . _locked . release () # release lock

834 time.sleep (1)

835 return 0

836 else:

837 if (0 != self._parsing_thread_id):

838 if (1 != self._parsing_thread_id.isAlive()):
839 # if parsing thread dead, reset semphore
840 self . parsing = 0

841 self. _parsing_thread_id = 0

842 Mutex . _locked . release () # release lock

843 time . sleep (1)

844 return —1

845

846 HHAHHARRBHHHHHHHHAARARHHH CLASS RPC HARRHH HHAHARARRR Y A A A
847

848 class RPC:

349 s

850 This class contains the RPC functions.

851 s

852 def __init__(self, verbose, semaphore, config_file, interval , keyword_path,

keyword_.name, xml_file_path):

853 s
854 constructor

855 s

856 self. _verbose = verbose

857 self. _client = True

858 self. _share = semaphore

859 self. _config_file = config_file

860 self. _interval = interval

861 self. _keyword_path = keyword_path

862 self._keyword_name = keyword_name

863 self. _xml_file_path = xml_file_path

864

865 self. _list = [] #for walking through the directory
866

867 def rpc_stop_server(self):

368 s

869 This function stops the server!

870 s

150

871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891

892
893
894
895
896
897
898
899
900
901

902
903
904
905
906
907
908
909
910
911

912
913
914
915
916
917
918
919
920
921

922

D Source Code

D.1 Server

def

def

def

def

def

command = "./stop_server"

answer = o0s.system (command)
print answer

return answer

rpc_disable_rpc_calls (self):

rrzs

This function disables rpc.
self._client = False
if self._verbose == 1:
print "$s -> RPC through \"admin tool\" disabled!" % time.ctime ()
return "RPC disabled"”

rpc_enable_rpc_calls(self):

rrs

This function enables rpc.
rry
self. _client = True
if self._verbose == 1:
print "$s -> RPC through \"admin tool\" enabled!" % time.ctime ()
return "RPC enabled”

rpc_status (self):

rrzs

This function return the current status of the self._client variable.
rrs
if self._client == True:
return "RPC enabled"”
else:
return "RPC disabled"”

rpc_interval_status (self):

rrs

This function returns the current parsing interval time.
rr
if self._client == True:
return self. _interval
else:
return —2

rpc_get_my_xml_file (self , filename):

rrzs

This functions gets the xml file from the server !
if (self._client == True):
if (0 == self._share.set_variable_client(1)):
check if file is available
try:
filus = self._xml_file_path+"/"+filename
client_.xml_fd = open(filus, ’"r”)

151

923
924
925
926
927
928
929

930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956

957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972

D Source Code D.1 Server

file_content = client_xml_fd.read ()
client_xml_fd.close ()

except IOError:
self. _share.set_variable_client (0)
return "no file"

#delete xml file

if (0 == delete_file ((self._xml_file_path+"/"+filename), self.

_verbose)):

self. _share.set_variable_client (0) # reset

return file_content
else:
if self._verbose == 1:

print "problems deleting file"

self. _share.set_variable_client (0)

return —1
else:
return -3 # server is busy parsing
else:
return —2 # rpc disalbed

def rpc_check_availabitity (self):
sy
This function check if the server is still in the parsing process.
if (self. _client == True):
if (0 == self._share.set_variable_client(1l)):
return 0
else :

return —3
else:
return —2

def rpc_get_file_list(self):

rrs

variable

This function walks through the x.xml directory and finds all files, which

need to be fetched form the client.

if (self._client == True):
self. _list = [] # empty list
try:
os.path.walk(self._xml_file_path , self._parse_directory ,
if (0 < len(self. _list)):
return self. _list
else:
return 0
except:
return —1
else:

return —2 # rpc disalbed

def rpc_update_configuration(self, section, key,

rrs

value ,

action) :

self. _list)

152

973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997

998
999

1000
1001
1002
1003
1004
1005
1006

1007
1008

1009

1010
1011
1012

1013
1014
1015
1016
1017

D Source Code D.1 Server

This functions adds or deletes values in the config.ini.
action:

0 = delete

1 = add

2 = exchange

4 = info

rrs

print "section: ", section

print "key: ", key

print "value: ", value
print "action: ", action
if (self. _client == True):
try:
config_fd = file(self._config_file, "r+’)
except IOError, e:
return "Problem -> %s" % e
byte_count = 0
while (1) :
byte_count = config_fd.tell ()
line = config_fd.readline ()
if line == 7’:
if self._verbose == 1:
print "%s —-> Section: \"%s\" and key: \"%s\" do not exist in

config file!" % (time.ctime(), section, key)
config_fd.close ()
return "Section: \"$s\" and key: \"$s\" do not exist in config

file!" % (section, key)

if (=1 != line.find(section)):
while (1) :
byte_count = config_fd.tell ()
line = config_fd.readline ()
if line == 7/:
if self._verbose == 1:
print "%s -> Key: \"%s\" do not exist under section

\"¢s\" in config file!" % (time.ctime (), key,
section)
config_fd.close ()
return "Key \"$s\" do not exist under section \"$s\" in
config file!" % (key, section)
if (=1 != line.find(key) and —1 != line.find("=") and —1 ==
line . find ("#", 0, 1)):
if action == O0:
if self._verbose == 1:
print "%s -> Delete \"$s:%$s\" value \"8s\"" % (
time.ctime (), section, key, value)
listus = line.split("=")
listus [1] = listus[1].strip ()
listus [1] = listus[1].strip(", ")
listus = listus [1].split("”, ")
for i in range(len(listus)):

153

1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036

1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055

D Source Code D.1 Server
listus[i] = listus[i].strip ()
new._content = /7
for i in range(len(listus)):
if int(listus[i]) != value:
new_content = new_content+"%s, " % listus/[i]
new_content = new_content. strip ()
new_content = new_content.strip (", ")
new_content = "%s = %s\n" % (key, new_content)

rest = config_fd.read ()

config_fd.
config_fd.
config_fd.
config_fd.
config_fd.
return "Ch
elif action ==
if self._v
print

ct

listus =1
listus [1]
listus [1]
listus = 1
finish = 0
while (fin
if len

fi

for i

fi

truncate (byte_count)

seek (byte_count)

writelines (new_content)
write(rest)

close ()

anges applied: %s" % new_content
1:

erbose == 1:

"g$s -> Add \"%s:%s\" value \"%s\"" % (time.

ime (), section, key, value)
ine.split("=")

= listus [1].strip ()

= listus [1].strip(", ")

istus [1].split(", ")

ish == 0):

(listus) == 0:

nish =1

in range(len(listus)):

nish = 1 # break the while loop

print listus[i]

li

stus[i] = listus[i].strip ()

try:

ex

print "test auf int"
temp-value = int(listus[i])
if value == temp_value:

config_fd.close ()

return "Value %d already exists!" %

value

cept ValueError, e:

finish = 0 # activate while loop

print e, listus[i]
del listus/[i]
break

new._content = 77

for i in r

ange (len(listus)):

new._content = new_content+"%s, " % listus/[i]
new_content = "%s = %s%s\n" % (key, new_content,
value)

154

1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077

1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116

D Source Code

D.1 Server

def

rest = config_fd.read ()
config_fd.truncate (byte_count)
config_fd.seek(byte_count)
config_fd.writelines (new_content)
config_fd.write(rest)
config_fd.close ()
return "Changes applied: %s" % new_content
elif action == 2:

exchange
if self._verbose == 1:

print "$s -> Change \"%$s:%$s\" to value

(time.ctime (), section, key, value)

rest = config_fd.read ()
config_fd.truncate (byte_count)
config_fd.seek(byte_count)
new_content = "8$s = %s\n" % (key, value)
config_fd.writelines (new_content)
config_fd.write(rest)
config_fd.close ()

if section == ’misc’ and key == ’‘minute’:
self . _interval = int(value)
return 0
elif action == 4:

config_fd.close ()
return line
else:
config_fd.close ()
return —1
else:
return "RPC disabled" # rpc disalbed

rpc_update_keyword_file (self , keyword, action):

rrzs

This function updates the keyword file.

action:
0 = delete
1 = add
2 = info
if (self. _client == True):
byte_count = 0
file_size = 0
comments = ’’/
filus = self._keyword_path+"/"+self ._keyword_name
try:

key_fd = file (filus , “r+’)
except IOError, e:
if self._verbose == 1:

\"es\"" 9

155

1117

1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152

1153
1154
1155
1156

1157
1158
1159
1160
1161
1162
1163
1164
1165

D Source Code

D.1 Server

print "$s -> Problem open keyword file -> $%s
e)
return "Problem -> 3s" % e
key_fd.seek (0, 2) # set cursor to end of file

file_size = key_fd.tell ()

key_fd.seek (0) # set cursor to begining of file
while (1) :
get comments
key_fd. tell ()
key_fd.readline ()
if byte_count >= file_size:
break
if (-1 line . find ("#", O,

comments += line

byte_count =
line =

1=

1)):

key_fd.close ()
keyword_list = get_keywords(filus)

keyword = keyword.split(":")

if action
test

if keyword is already there
for i

if

in range(len(keyword_list)):
1 ==
if keyword[O0] keyword_list[i][0]:
del keyword_list[i]
try:
key_fd = file (filus ,
print key_fd

,W+,)

key_string =
key_fd. write (comments)
key_fd.write (key_string)
key_fd.close ()
except IOError, e:
if self._verbose == 1:
print
(time.ctime (), e)
"Problem ->

return %s" % e

return

"%$s —-> Problem open keyword file -> %s

I'" % (time.ctime (),

len (keyword) and 1 == len(keyword_list[i]):

list_to_string (keyword_list)

' %

"keyword %s from keyword list deleted" % keyword

elif 2 == len(keyword) and 2 == len(keyword_list[i]):

if keyword[O0]
keyword_list[i][1]:

keyword_list[i][0] and keyword[l] ==

del keyword_list[i]
try:
key_fd = file (filus , ‘w+’)
key_string = list_to_string (keyword_list)
key_fd. write (comments)
key_fd.write (key_string)
key_fd.close ()
except IOError, e:
if self._verbose == 1:

156

D Source Code D.1 Server

1166 print "$s -> Problem open keyword file -> %s !" %

(time.ctime (), e)

1167 return "Problem -> $s" % e

1168 return "keyword $%s from keyword list deleted" % keyword

1169

1170 return "keyword %s was not part of keyword list" % keyword

1171

1172 if action == 1:

1173 # test if keyword is already there

1174 for i in range(len(keyword_list)):

1175 if 1 == len(keyword) and 1 == len(keyword_list[i]):

1176 if keyword[0] == keyword_list[i][0]:

1177 return "keyword %s already in keyword list" % keyword

1178 elif 2 == len(keyword) and 2 == len(keyword_list[i]):

1179 if keyword[0] == keyword_list[i][0] and keyword[1l] ==
keyword_list[i][1]:

1180 return "keywords %s already in keyword list" % keyword

1181

1182 keyword_list.append (keyword)

1183 try:

1184 key_fd = file (filus , ‘w+’)

1185 except IOError, e:

1186 if self._verbose == 1:

1187 print "%s -> Problem open keyword file -> %s !" % (time.ctime
0O, e)

1188 return "Problem -> %s" % e

1189

1190 key_string = list_to_string (keyword_list)

1191 key_fd . write (comments)

1192 key_fd. write (key_string)

1193 key_fd.close ()

1194

1195 return key_string

1196

1197 if action == 2:

1198 return list_to_string (keyword_list)

1199

1200 else:

1201 return "RPC disabled"”

1202

1203 def _parse_directory(self, arg, dirname, fnames):

1204 a4

1205 This function "walks" through a given directory and looks for the client_log.

xml file. The name and last modified time are saved in a list (2
dimensional array). The function should be used with os.path.walk (path,

function_name, arg)!

1206

1207 dirname = directory which need to be pared
1208 fnames = files within dirname

1209 4

1210 d = os.getcwd ()

1211 # change into log file directory

157

1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227

AowoD

© ® 9 o W

D Source Code D.1 Server

try:
os.chdir(dirname)
except:
if self._verbose == 1:
print "could not find directory \"$s\"" % dirname
return —1
for each file
for f in fnames:
check if file and if file is a log file e.g. client_log.xml

if (not os.path.isfile(f)) or (None == re.search(’client_log.xml’,

continue
else:
save filename into an arrray (list)
self. _list.append(f)
change back into the working directory
os.chdir(d)

f)):

D.1.3 Module utils server.py

LISTING D.3: Module utils_server.py

#!/usr/bin/env python

rrzs

This module provides basic utilities for the modules server_classes.py and

start_server.py.

Reading University
MSc in Network Centered Computing

a.weise - a.weisef@reading.ac.uk - December 2005

rrvs

import ConfigParser, string
import time, os

def LoadConfig(file_name , config={}):
mmn
returns a dictionary with key’s of the form

<section>.<option> and the values

source: http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/65334
config = config.copy ()
cp = ConfigParser.ConfigParser ()
cp.read(file_.name)
for sec inm cp.sections():

name = string.lower(sec)

for opt in cp.options(sec):

config[name + "." + string.lower(opt)] = string.strip(cp.get(sec,

opt))

158

28
29
30
31
0
33
34
35
36
37
38
39
40
4

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

D Source Code

D.1 Server

def

def

return config

check_ip (ip):

rrs

This function checks if a given IP is valid.
rrs
try:
ip = ip.split(".")
except AttributeError:
return —1

for i in range(len(ip)):

check = ip[i].find("0", 0, 1)

if —1 != check and 1 < len(ip[i]):
return —1

try:
ip[i] = int(ip[il)

except ValueError:
return —1

if ip[i] >= 0 and ip[i] <= 255:
pass

else:
return —1

return 0

get_keywords (filus):

rrvs

This function extracts keywords from a give file!

keys = []
try:
file_fd = file(filus, “r”)
except IOError, e:
print "Problem with keyword file —> ", e
return —1
content = file_fd.readlines ()# save file content as list (I line == 1 entry)

file_fd .close ()

content = remove_item (content, "#")
content = remove_item (content, "\n")

for i in range(len(content)):

content[i] = content[i].strip ()
content[i] = content[i]. rstrip(",")
content[i] = content[i].split(",")

for a in range(len(content[i])):
keys.append(content[i][a])

159

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

106
107
108
109
110
111

112
113
114
115
116
117
118
119
120
121

122
123
124
125
126
127
128
129
130

D Source Code D.1 Server

def

def

def

for i in range(len(keys)):
keys[i] = keys[i].strip () # remove whitespace
keys[i] = keys[i].split(":")

return keys

remove_item (listus , item):

rrvs

This function removes an item for a list (2 dimentional) as a rekursive function.

rrvs

while (1) :

for i in range(len(listus)):
if —1 != listus[i].find(item, O, 1):
del listus[i]
remove_item (listus , item)
break
else:
break

return listus

list_to_string (listus):

rrvs

This function converts the keyword list (2 dimensional array) to a keyword string
(keywords comma separated), so the string is writable into the keyword file.

rrvs

str_listus = 7/

for i in range(len(listus)):
if 1 == len(listus[i]):
str_listus += listus[i][O]+", "
elif 2 == len(listus[i]):
str_listus += listus[i][O]+":"+1listus [i][1]+", "

str_listus = str_listus.strip ()

str_listus = str_listus.strip("”,")
return str_listus
delete_file (file_name , verbose):

rrvs

This function deletes a file.

try:
os.remove (file_name)
return 0

except:
if verbose == 1:

print "$s -> could not delete -> \"%s\"" % (time.ctime (), file_name)

return —1

160

131
132
133
134
135
136
137
138
139

140
141
142
143
144
145
146
147
148
149

L " I S B
R . T

© w 9 o

D Source Code D.1 Server

def usage_exit(progname, msg=None)

rrzs

This function diplays the usage of this program and terminates the program!
s
if msg:
print msg
print
print "usage: python $%s [—h|/--help -c|--config -v|--verbose —-d|--daemon] \n\n" %
progname
os._exit(—1)

def find(search, listus):

rrvs

This function finds an item within a list (1 dimensional).
sy
for i in range(len(listus)):
if listus[i] == search:
return listus/[i]
return None

D.1.4 Script stop_server.sh

LISTING D.4: Script stop_server.sh

#!/bin/sh
Script to shutdown server

Reading University

MSc in Network Centered Computing

a.weise — a.weise@reading.ac.uk — December 2005
echo "stopping server"

name=start_server .py

Find all servers
server_pid=‘ps —elf | egrep $name | egrep —v grep | awk ’{ print $4 }’°¢

if ["Sserver_pid" = ""]
then
echo No server is running !
else
/bin/ kill —15 $server_pid
server_-pid=‘ps —elf | egrep $name | egrep —v grep | awk *{ print $4 } ¢
if ["Sserver_pid" = ""]
then
echo server stopped
else

161

25
26
27
28

L N N

e ® 9 o

27
28
29
30
31
32
33
34
35

D Source Code

D.2 Client

/bin/ kill -9 $server_pid
echo server killed
fi
fi

D.2 Client

D.2.1 Module start client.py

LISTING D.5: Module start_client.py

#!/usr/bin/env python

rrzs

This module is the log file parser client start file.

Reading University
MSc in Network Centered Computing

a.weise - a.weisel@reading.ac.uk - December 2005

rros

import client_classes , os, sys, time
import getopt, smtplib, socket
from utils_client import LoadConfig, check-ip, usage_exit,

class MyClient:

rrvs

main class for the client application

rrs

def __init__(self, config_data, verb, smtp_pa):

rrs

Constructor

rrs

self . _verbose = verb
config = config_data

self. _workingpath = os.getcwd ()

put together path and file

self. _database_name = config.get("database.name")
self._database_path = config.get("database.path")

get_password

self._database_path = self._database_path.rstrip("/")

if (config.get("database.path") == 7’ or config.get("database.path")

field is empty
self . _database_path = self._workingpath

else:

self . _database_name = self._database_name.strip ()

None) :

162

36
37
38
39
40
41
42
43
44
45
46

47
48
49
50
51
52
53
54

55
56
57
58
59

60
61
62
63
64
65
66
67

68
69
70
71
72

73
74
75
76
77
78
79
80
81
82

D Source Code D.2 Client

if (-1 != self._database_path.find("/", 0, 1)):
first character /7
print "/ an erster stelle"
#pass

else:
self. _database_path = self._workingpath+"/"+self. _database_path

self . _error_description_.name = config.get("files.error_description™)

self. _error_description_path

self. _error_description_path

if (config.get("path.path_error_

config.get("path.path_error_description")
self. _error_description_path.rstrip("/")
description") == 7’/ or config.get("path.

path_error_description") == None):
self. _error_description_path = self._workingpath
else:
self. _error_description_name = self._error_description_name . strip ()
if (-1 != self._error_description_path.find("/", 0, 1)):
first character /7
pass
else:
self . _error_description_path = self._workingpath+"/"+self.
_error_description_path
self. _client_certificate = config.get("files.client_certificate™)
self. _client_certificate_path = config.get("path.path_client_certificate™)
self. _client_certificate_path = self. _client_certificate_path.rstrip("/")
if (config.get("path.path_client_certificate") == ’’ or config.get("path.
path_client_certificate™) == None):
self. _client_certificate_path = self._workingpath
else:

self. _client_certificate
if (=1 != self._client_certificate_path.find("/", 0, 1)):

else:

self. _client_certificate .strip ()

first character /7
pass
self. _client_certificate_path = self._workingpath+"/"+self.

_client_certificate_path

self. _client_ca

= config.get("files.client_ca")

self . _client_ca_path = config.get("path.path_client_ca")

self. _client_ca_path = self._client_ca_path.rstrip("/")

if (config.get("path.path_client_ca") == ’’ or config.get("path.path_client_ca
") == None):
self. _client_ca_path = self._workingpath

else:
self. _client_ca = self._client_ca.strip ()

if (-1 != self._client_ca_path.find("/", 0, 1)):

first
pass

else:

check

character /7

self. _client_ca_path

if the

configuration

if

self. _workingpath+"/"+self. _client_ca_path

correct

163

83

84

85
86
87
88

89
90
91

92

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

111
112
113
114
115
116

117
118
119
120
121

122
123
124

D Source Code D.2 Client

if (0 == os.path.exists(self. _client_certificate_path+"/"+self.
_client_certificate)):
print "Could not locate client certifiate under %s !\nMaybe change
configuration file and try again!/\n\n" % self.
_client_certificate_path

os. _exit(—1)

if (0 == os.path.exists(self._client_ca_path+"/"+self. _client_ca)):
print "Could not locate client ca certificate under $%s !\nMaybe change
configuration file and try again!/\n\n" % self. _client_ca_path
os._exit(—1)

if (0 == os.path.exists(self._error_description_path+"/"+self.
_error_description_name)):
print "Could not locate error description file under %s !\nMaybe change
configuration file and try again!/\n\n" % self. _error_description_path
os._exit(—1)

self. _project = config.get("project.name")
self. _interval = int(config.get("misc.minute"))
create server list

servers = config.get("server.serverlist")

split where commas
servers_split = servers.split(",")
create dictionary
self. _serverlist = {} # dictionary for serverlist:port
for i in range(len(servers_split)):
remove whitespace
servers_split[i] = servers_split[i].strip ()
temp-list = servers_split[i].split(":")
remove whitespace
if len(temp_list) != 2:
print "The IP configuration \"$s\" seems not correct. \nPlease check
the configuration file!\n\n" % temp_list[O0]
os.._exit(—1)
temp_list[0] = temp_list[0]. strip ()
temp_list[1] = temp_list[1].strip ()
check if IP is valid
if (—1 == check_ip(temp_list[0])):
print "The IP \"$s\" seems not correct. \nPlease check the
configuration file!\n\n" % temp_list[0]
os._exit(—1)
try:
temp-_list[1] = int(temp_list[1])
except ValueError:
print "The port \"$s\" is not valid.\nPlease check the configuration
file!\n\n" % temp_list[1]
os._exit(—1)
if (temp_list[1] < 1024 or temp_list[1] > 50001):
print "A server port is out of range. \nPlease check the

configuration file and make sure the server port lies between

164

D Source Code D.2 Client

1025 (inclusive) and 50000 (inclusive) !\n\n"

125 os.._exit(—1)

126 self. _serverlist[temp_list[0]] = temp_list[1]
127

128 self . _share = client_classes .Mutex ()

129

130 # mail issues

131 self . _smtp_server = config.get("mail.smtp_server")
132 self. _smtp_pass = smtp_pa

133 self. _smtp_from = config.get("mail.from")

134 self. _smtp_user = config.get("mail.user")

135

136 if (None != self._smtp_pass):

137 # test if smtp server and login is possible
138 try:

139 if self._verbose == 1:

140 print "Test SMTP connection to server \"$s\"...." % self.

_smtp_server

141 server = smtplib .SMTP(self._smtp_server)

142 print "server object: ", server

143 if self._verbose == 1: # —— debug ——

144 server.set_debuglevel (1) # —— debug ——
145 server.login(self. _smtp_user, self._smtp_pass)
146 server.quit ()

147 if self._verbose == 1:

148 print "SMTP connection successfully tested"
149 except smtplib. SMTPAuthenticationError, e:

150 print "Problem with SMTP server authentication -> \"$s\" !" % e
151 print "\n"

152 os._exit(—1)

153 except socket.error, e:

154 print "Problem with SMIP server —> \"$s\" I" % e
155 print "\n"

156 os._exit(—1)

157

158 self. _mail_address = [] # mail address list

159 z =1

160 while (1) :

161 temp = "mail_ to.address_%d" % z

162 testus = config.get(temp)

163 if testus == None:

164 break

165 self. _mail_address .append(testus)

166 z += 1

167

168 keywordfiles = []

169

170 z =1

171 while (1) :

172 temp = "mail_ to.path_ignore_error_%d" % z

173 path = config.get(temp)

174 if (path == 77 or path == None):

165

D Source Code D.2 Client

175 path = self._workingpath

176 else:

177 path = path.rstrip("/")

178 if (-1 != path.find("/", 0, 1)):

179 # first character /7

180 pass

181 else:

182 path = self. _workingpath+"/"+path

183

184 temp = "mail_to.file ignore_error_%d" % z

185 filus = config.get(temp)

186 if filus == None:

187 break

188 filus = filus.strip ()

189

190 keywordfilus = path+"/"+filus

191

192 if (0 == os.access(keywordfilus, 4)): # 4 — R.OK —> read only
193 print "Could not access keyword file under %s !\nMaybe change

configuration file and try again!/\n\n" % keywordfilus

194 os._exit(—1)

195

196 keywordfiles .append(keywordfilus)

197 z += 1

198

199 self. _mail_ignore_error = range(len(keywordfiles))
200 for i in range(len(keywordfiles)):

201 self. _mail_ignore_error[i] = self._get_keywords (keywordfiles[i])
202

203 def _get_keywords(self, filus):

204 rrs

205 This function extracts keyword from a give file!
206 sy

207 keys = []

208

209 try:

210 file_fd = file(filus, 7r”)

211 except IOError, e:

212 print "Problem with keyword file —-> ", e
213 return —1

214

215 content = file_fd.readlines ()# save file contetn as list (I line == 1 entry)
216

217 file_fd.close ()

218

219 content = self._remove_item (content, "#")

220 content = self._remove_item(content, "\n")

221

222 for i in range(len(content)):

223 content[i] = content[i].strip ()

224 content[i] = content[i].rstrip(",")

225 content[i] = content[i].split(",")

166

254
255

256
257
258
259
260
261
262
263
264
265

266
267

268

D Source Code

def

def

def

def

for a in range(len(content[i])):
keys.append(content[i][a])

for i in range(len(keys)):
keys[i] = keys[i].strip () # remove whitespace
keys[i] = keys[i].split(":")

return keys

_remove_item (self, listus , item):

rrzs

This function removes an item for a list as a rekursive function.

rrzs

while (1) :
for i in range(len(listus)):
if —1 != listus[i].find(item, 0, 1):
del listus[i]
self._remove_item (listus , item)
break
else:
break

return listus

initialise_database (self):

sy

This function is initalising the database, creates it, when it’s not there!
It creates finally the database access cursor for further work with the
database .

rrs

self._db = client_classes.MyDatabase (self._error_description_name, self.
_error_description _path, self._database_name, self._database _path, self.

_serverlist.items (), self._project, self._verbose)

get_serverlist (self):

rrzs

This function returns the server list.

rrs

return self._serverlist

fetch_error_messages (self) :

s

This function starts the worker thread, who initalises the regular fetching
of the error messages.

rrzs

self._workerthread = client_classes.WorkerThread(self._share, self._db, self.

interval, self. serverlist.items(), self._client_certificate, self.

_client_certificate_path, self._client_ca, self._client_ca _path, self.

_verbose, self._mail_address, self._mail ignore error, self._smtp_server,

self._smtp_pass, self._smtp_from, self._smtp_user)

self._workerthread.setName ("workerthreadDaemon")

167

D.2 Client

D Source Code D.2 Client

269 self._workerthread.start ()

270

271 if self._verbose == 1:

272 print "$s —-> Manager thread started !" % (time.ctime()) #--- debug —-—-—
273

274

215 ######AAAFFHRAAAAAARAAAAA A AR A AR AR A AR AR AR HH

276

277 def daemonize (verbose, stdout = ’/dev/null’, stderr = None, stdin = ’/dev/null”’,

pidfile = None, startmsg = ’Client daemon started with pid %s”) :

278

279 rre

280 This function creates a daemon by forking the current process. The parameters
stdin, stdout, and stderr are file names which substitute the standard err —,
in—, out— output. This parameters are optional and point normally to /dev/
null. Note that stderr is opened unbuffered, so if it shares a file with
stdout then interleaved output may not appear in the order that you expect.

281

282 source: http ://aspn.activestate .com/ASPN/Cookbook/Python/Recipe/66012

283 modified by a.weise November 2005

284 s

285

286 # first fork => fork creates first child-process

287 try:

288 pid = os.fork()

289 if (pid > 0):

290 sys.exit (0) # close first parent-process

291

292 except OSError, e:

293 sys.stderr.write ("fork #1 failed: (%d) %s\n" % (e.errno, e.strerror))

294 sys.exit (1)

295

296 os.umask (0)

297 os.setsid()

298

299 # second fork

300 try:

301 pid = os.fork()

302 if (pid > 0):

303 sys.exit (0) # close second parent-process

304

305 except OSError, e:

306

307 sys.stderr.write ("fork #2 failed: (%d) %s\n" % (e.errno, e.strerror))

308 sys.exit (1)

309

310 # open standard in and out and print standard message

311 if (not stderr):# if not stderr given => take stdout-path

312 stderr = stdout

313

314

315 if verbose == 1:

168

D Source Code D.2 Client

316 si = file(stdin, ’'r’)

317 so = file(stdout, ’‘w+’) # w —> overwrite old log content
318 se = file(stderr, "w+’, 0)

319 pid = str(os.getpid())

320 sys.stderr.write ("\n%s\n" % startmsg % pid)
321 sys.stderr.flush()

322 if pidfile:

323 file(pidfile,’w+’).write ("$s\n" % pid)
324

325 # redirect standard in and out to files

326 os.dup2(si.fileno(), sys.stdin.fileno())
327 os.dup2(so.fileno (), sys.stdout.fileno())
328 os.dup2(se.fileno(), sys.stderr.fileno())
329

330

331

2 HEARAHAFAAAAAARARARAAAARAA AR RAHAA A RA AR RAH A AR AR RAAA A A A A
333

334 def start():

3

@

335

336 4

337 Start the application.

338 rrs

339 configfile = ""

340 verbose = 0

341 smtp_pass = None

342 daemon = 0

343

344 try:

345 opts, args = getopt.getopt (sys.argv[1:], “c:vhpd’, [’config=’, ’verbose’, ’

help’, ’smtp_password’, ‘——daemon’])

346 for opt, value in opts:

347 if opt in (’—h’,’—help’):

348 msg = "\n-——————————- Help —————————- \n\n\n"\

349 "-c or --config\t\t-> defines config file, if no config file
given, default values are used\n"\

350 "-p or —--smtp_password\t—-> activates mail notification sending
\n"\

351 "-v or --verbose\t\t-> activates printing of messages [debug
option]\n"\

352 "-d or —-—-daemon\t\t-> daemonize the client\n"\

353 "-h or —--help\t\t-> print this help\n\n"

354 usage_exit (sys.argv[0], msg)

355 if opt in (’—c’,’—config’):

356 value = value.replace("=", "")

357 configfile = os.getcwd()+"/"+value

358 if opt in (’—v’,’——verbose’):

359 verbose = 1

360 if opt in (’—p’, ’‘—smtp_password’):

361 smtp_pass = get_password ("Please enter SMTP password: ")

362 if opt in (’—d’, ’——daemon’) :

363 daemon = 1

169

D Source Code D.2 Client

364 except getopt.error, e:

365 usage_exit (sys.argv[0], e)

366

367 # load config file or default values

368 if (configfile != ""):

369 # check if file exists

370 if(l == os.path.exists (configfile)):

371 config = LoadConfig(configfile)

372 else:

373 # if file NOT exists terminate program

374 print "Sorry, a given file does NOT exist !\nPlease try again!\n\n"

375 os._exit (-1)

376 else:

377 msg = "\nNo config file spezified !\n"

378 usage_exit (sys.argv/[0], msg)

379

380 print "\n\n-———-—-—-————————————— SRB LOG FILE PARSER [CLIENT]
—————————————————— \n\n"

381 print "Starting ..."

382

383

384 worker = MyClient (config, verbose, smtp_pass)

385 worker.initialise database ()

386

387 if daemon == 1:

388 if verbose == 1:

389 daemonize (verbose, stdout = ’‘daemonize.log”’)

390 else:

391 daemonize (verbose)

392 else:

393 pass

394

395 print "%s -> Start manager thread ..." % (time.ctime())

396 worker.fetch_error_messages ()

397

398 if _ _name _ == ’/__main__’:

399

400 start ()

D.2.2 Module client classes.py

LISTING D.6: Module client_classes.py

#!/usr/bin/env python

rros

This module contains all imports, defines and basic classes for start_client.py.

BowoD

5 Reading University

6 MSc in Network Centered Computing

170

D Source Code D.2 Client

a.weise — a.weiselreading.ac.uk — December 2005
rrs

misc

import os, sys, signal, re, copy

import string , time

36
37

39
40
41
42

database
sqlite

import smtplib ,

xml parsing
from xml.sax import make_parser
from xml.sax.handler import ContentHandler,

import xml.sax
connection
from M2Crypto. m2xmlrpclib import Server,

from M2Crypto import SSL

threads
import threading ,

#unn###nn####n#### CLASS MyContentHandler

class MyContentHandler (ContentHandler):

This class is derived from _xmlplus.sax.handler and provides individual functions

for parsing the xml file.

feature,namespaces

SSL_Transport

HARBHHHHAAAARAA AR

__init__ ignore_error ,
rrs

Constructor

rrs

self

self. _my_mail_ignore_error = ignore_error
self. _mail_obj = mail_obj

self._ip = ip

self._db = db_object

self. _db_access = self._db.get_access_cursor ()
self._searchTerm = ""

self._date = ""

self. _date_flag

Il
(=}

self. _time = ""
self. _time_flag = 0
self . _error_.number = 0

self. _error_number_flag = 0
self. _error_string = ""
self . _error_string_flag = 0

self. _linenumber = 0

171

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
9
92
93
94
95
9%
97
98
99
100
101
102
103
104
105
106
107
108

D Source Code

D.2 Client

def

def

def

def

1l
(=)

self. _linenumber_flag

set_ip (self, ip):

rrs

The function sets the member variable _ip.

rrzs

self._ip = ip

startElement (self , tag, attr):

rrzs

The function overwrites the startElement function.

rrzs

self._searchTerm = tag

characters (self, tag_text):

rrzs

This function overwrites the character function to extract the tag content.

rrs

if (self._searchTerm == "date"):

self . _date = tag_text
self . _date_flag =1
elif (self._searchTerm ==
self. _time = tag_text
self. _time_flag = 1
elif (self._searchTerm ==

self . _error_number =

"time"):

"error._number"):

tag_text

self. _error_number_flag = 1

elif (self._searchTerm ==
self. _error_string =

"error_string"):

tag_text

self. _error_string_flag =1

elif (self._searchTerm ==

"]linenumber"):

self._linenumber = tag_text

self. _linenumber_flag

endElement(self , tag):

rrs

This function overwrites endElement function.

rros

=1

if (self._searchTerm == "date"):

pass

elif (self._searchTerm ==
pass

elif (self._searchTerm ==
pass

elif (self._searchTerm ==
self. _error_string =

elif (self._searchTerm ==

"time"):

"error_number"):

"error_string"):

self. _error_string .replace("\"",

"]inenumber"):

pass

self . _searchTerm = "" #reset variable

if (self. _date_flag == 1 and self._time_flag == 1 and self._error_number_flag
== 1 and self. _error_string_flag == 1 and self._linenumber_flag == 1):

172

109
110
111
112
113
114
115
116
117
118
119

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

D Source Code D.2 Client
save in database
success = self. _insert ()
if success == —1:
raise exception to exit
print " raise exception”
assert success == 0
add mail content
if (0 != len(self._mail_obj)):
for i in range(len(self._mail_obj)):
check = self._test_keywords(self._my_mail_ignore_error[i], len(

self. _my_mail_ignore_error[i])—1, self._error_string)

if (0 == check

print

cont = "\n

):

add mail content”

"\ndate:\t\t\t"+self. _date+ \
"\ntime:\t\t\t"+self. _time+ \

"\nerror message:\t\t"+self . _error_string+ \

"\nline number:\t\t"+self. _linenumber

add mail

content

self. _mail_obj[i][0].add(cont)
modify error counter
self. _mail_obj[i][0].count()

set firs

t

date

temp = "$s (%s)" % (self._date, self._time)
if self._mail_obj[i][0]. get_first_date () == 7":
self. _mail_obj[i][0].set_first_date (temp)

set last

date

self. _mail_obj[i][0].set_last_date (temp)

reset variables

self. _reset ()

def _test_keywords(self, keywordlist, amount_of_keywords, teststring):

rrs

This is a recursive function,

string (AND relation).

which tests if a list of keywords 1is part of a

If all keywords found 0 is returned, otherwise -1

keywordlist = 1list of all keywords

amount_of_keywords = number of keywords in list

teststring = string, which needs to be investigated

return -1 if line is not interesting

return 0 if line is taken

rrvs

if (amount_of_keywords == 0):

#last keyword check

-1

!= content. rfind (”NOTICE”)

if (2 == len(keywordlist[amount_of_keywords])):

if (=1 == teststring.rfind (keywordlist[amount_of_keywords][0])):

not in string go to next keyword

return 0

else:

173

159
160
161
162
163
164
165
166
167
168
169

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

185
186
187
188
189
190
191

192
193
194
195
196

197
198

199
200
201
202
203
204

D Source Code D.2 Client

if (=1 == keywordlist[amount_of_keywords J[1]. rfind ("!")):
check for NO keyword
temp = keywordlist[amount_of_keywords][1]. strip("/")
if (—1 == teststring.rfind (temp)):
go on to next keyword
return 0
else:
return —1
else:
there is no 7!”
if (—1 != teststring.rfind(keywordlist[amount_of_keywords
11D):
string is there, go on to next keyword
return 0
else:

return —1

else:
if (=1 == teststring.rfind (keywordlist[amount_of_keywords][0]))
not in string go to next keyword
return 0
else:
return —1
else :

if(2 == len(keywordlist[amount_of_keywords])):
if (-1 == teststring.rfind (keywordlist[amount_of_keywords][0])):
not in string go to next keyword
return self._test_keywords (keywordlist, amount_of_keywords —1,
teststring)
else:
if(—1 == keywordlist[amount_of_keywords]J[1]. rfind ("/")):
check for NO keyword
temp = keywordlist[amount_of_keywords J[1]. strip("!")
if (—1 == teststring.rfind(temp)):
go on to next keyword
return self. _test_keywords (keywordlist ,
amount_of_keywords —1, teststring)
else:
return —1
else:
there is no 7!”
if (—1 != teststring.rfind(keywordlist[amount_of_keywords
111
string is there, go on to next keyword
return self._test_-keywords (keywordlist ,
amount_of_keywords —1, teststring)
else:
return —1
else:
if (=1 == teststring.rfind (keywordlist[amount_of_keywords][0])):
not in string go to next keyword
return self._test_keywords (keywordlist, amount_of_keywords —1,
teststring)

174

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

D Source Code D.2 Client
else:
return —1
def _reset(self):
rrs
This function resets member variables.
self. _date = ""
self. _date_flag = 0
self. _time = ""
self. _time_flag = 0
self . _error_.number = 0
self. _error_number_flag = 0
self. _error_string = ""
self. _error_string_flag = 0
self._linenumber = 0
self._linenumber_flag = 0
def _insert(self):
rrs
This function inserts the data from the xml file into the database.
sy
get first error number id !!!!!11111rrrrrrrry
if (/-7 == self. _error_number):
#if no error number
self . _error_number = 999999
sql = 7/ SELECT * FROM error WHERE e_number = "$s" ’/ % self._error_-number

success , self._db_access = self._db.execute_sql (1200, self._db_access, sql)
if success == —1:
return —1
data = self._db_access.fetchall ()
if (0 == len(data)):

error number not in database —> insert new error number into database

sql = 7 INSERT INTO error (e_number, e_name, e_description) VALUES ("%s"
"not specified", "") ’ % self._error_number

data = self._db_access.execute(sql)

sql = 7/ SELECT * FROM error WHERE e_number = "$s" / % self. _error_number

success , self._db.execute_sql (1200, self._db_access, sql)
if success == —1I:

return —1
data = self._db_access.fetchall ()

error_id = data[O0]["e_id"]

check if dataset already there

sql = /SELECT * FROM messages WHERE error_e_id = "%$s"’% error_id+ \
/ AND m_date = "%s" ‘% self._date + \
/7 AND m_time = "%s" ‘% self._time + \
’ AND m_error_string = "$s"’ %(self._error_string)

success , self._db.execute_sql (1200, self._db_access, sql)

175

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

273
274
275
276
277
278
279
280
2

%

1
282
2

>

3
284
285
286
287
288

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

D Source Code

D.2 Client

if success —1:
return —1
self. _db_access.fetchall ()
if (0 == len(data)):
if dataset
2. get host id
sql = ’"SELECT x FROM host WHERE h_ip_ address
, self._db.execute_sql (1200,
—1:

data

is not in database insert it

"$s"; " % self
sql)

success

if

self._db_access ,
success ==
return —1
self. _db_access.fetchall ()
len(data)):

data [O]["h_1id"]

data
if (1
ip
else:
ip data [O]["h_id"]
insert data
sql INSERT INTO messages (host_h_id,
m_line_number) VALUES (%s,
self. _date ,

in database

error_e_1id, m _date,
m_error_string,
” % (ip,
_linenumber)

, self._db.execute_sql (1200,

success —1:

o "o "
s, "&s",

error_id , self._time, self._error_s
success

if

self. _db_access, sql)

return —1
else:
pass

return 0

#unnnnnnnpnnnnannn CLASS Mail ###AHHHARRRRSHHHAAHH

class Mail:

rrvs

This class deals with the mail issues.

rrzs

def __init__(self,

):

rros

mail_address , smtp_server, smtp_pass, smtp_from,

Constructor

rrzs

self
self

. _verbose verbose

._mail_address = mail_address

"o n
gs",

. _ip

m_time,
"ss", $s);

tring , self.

user , verbose

self
self
self
self
self

self
self
self
self

._smtp_server
.-smtp_pass
._smtp_from
._smtp_user
.-mail_name

._error_count
. _first_date
.-last_date

. _first_date_flag

= smtp._server
smtp_pass
smtp_from
user

"temp_email_unknown.txt"

0

- r7

rs

0

176

D Source Code D.2 Client

304

305

306

307 def create_content(self, name):

308 rrr

309 This function creates a temorary file, where the mail content gets saved
temporarly.

310 (a4

311 try:

312 file_fd = open(name, “w’)

313 self._mail_-name = name

314 file_fd.close ()

315 return 0

316 except IOError, e:

317 if self._verbose == 1:

318 print "%s -> Problem creating email content -> " % (time.ctime (), e)

319 return —1

320

321 def add(self, content):

322 rry

323 This function adds to the mail content.

304 rrs

325 try:

326 file_fd = file (self._mail_name, ’“r+’")

327 file_fd.seek (0, 2) # cursor to end of file

328 file_fd . writelines (content)

329 file_fd .close ()

330 return 0

331 except [IOError, e:

332 if self._verbose == 1:

333 print "$s -> Problem adding email content —-> " % (time.ctime(), e)

334 return —1

335

336 def count(self):

337 rrs

338 This function counts all inserted error within the mail by incrementing the
member variable self._error_count.

339 8¢

340 self. _error_count += 1

341

342 def set_first_date (self, value):

3 s

344 This function modifies the memeber variable self._first_date.

345 s

346 self. _first_date = value

347

348 def get_first_date (self):

349 rrs

350 This function returns the content of the memeber variable self._first_date.

351 rrs

352 return self. _first_date

353

177

354
355
356
357
358
359
360

362
363
364
365

366
367
368
369

370
371
372
373
374
375
376
377

378
379
380
381

382
383
384

386
387
388
389
390
391
392
393
394
395
396

D Source Code D.2 Client

def

def

set_last_date (self , value):

rrs

This function modifies the memeber variable self._last_date

rrs

self. _last_date = value

send_mail (self , receiver, server):

rrzs

This function sends the mail away.
rr
if self._verbose == 1:
print "%s -> Try to send Mail, to —> \"8$s\" ..." % (time.ctime(),

receiver)

put together mail content

subject = “SRB LOG FILE PARSER NOTIFICATION - %s’ % time.ctime(time.time())

content = “Hello, \n\nthis is an automatic generated mail from SRB LOG FILE
PARSER [Client] ! Your are registered for recieving this notification
for the SRB Server @ $%s where between $%s and %s —> $%s interesting errors
occured. \n\n-————————-——————— error messages start ———————————————— \n\n’

% (server, self. _first_date , self._last_date , self._error_count)

try:
if self._error_count <= 5000:
file_fd = open(self._mail_-name, ’‘r’)
mail_error = file_fd.read ()
file_fd.close ()
else:
mail_error = "!!!\n\nTo detailed error messages could not be supplied

due to more than 5000 messages. Please check the database or the

original SRB log file.\n\n!!!\n"

if mail_error != "":
content += mail_error
content += ‘\n\n-———————-——————— error messages end ———————————————-— \
n\nPlease do not respond to this mail!\n\n\nSRB LOG FILE PARSER [
CLIENT]\n--\n[powered by linux]’

timus = time.strftime ("%d $B %Y 2H:8M:%S")

text

’From: ’+self._smtp_from+’\n”’
text += “To: ’“+receiver+’\n’
text += ’Date: ’‘+timus+’\n’

+

text += ’‘Subject: ’‘+subject+’\n’

text text + content

establish connection to smtp server
server = smtplib .SMTP(self. _smtp_server)

server.login(self._smtp_user, self._smtp_pass)

#transmit

178

D Source Code D.2 Client

397 server.sendmail (self._smtp_from, receiver, text)

398 #done

399 if self._verbose == 1:

400 print "$s -> Mail sent to \"%s\" !" % (time.ctime (), receiver)

401 server.quit ()

402 self. _error_count = 0

403 return 0

404 else:

405 if self._verbose == 1:

406 print "$s -> Nothing to send to \"%s\" !" 9% (time.ctime(),
receiver)

407 self. _error_count = 0

408 return—1

409 except smtplib. SMTPAuthenticationError, e:

410 if self._verbose == 1:

411 print "$s -> Proplem with SMTP server authentication —> \"&s\" !" % (

time.ctime (), ¢)

412 print "\n"

413 self. _error_count = 0

414 return —1

415 except socket.error, e:

416 if self._verbose == 1:

417 print "$s -> Problem with SMTP server —-> \"%s\" !" 9% (time.ctime(), e
)

418 print "\n"

419 self. _error_count = 0

420 return —1

421 except:

422 if self._verbose == 1:

423 print "$s -> Problem with sending mail to \"%s\" !" % (time.ctime (),
receiver)

424 self. _error_count = 0

425 return —1

426

427 def delete_content(self):

428 rry

429 This function deletes the temorary file with the mail content.

430 sy

431 try:

432 os.remove(self._mail_name)

433 if self._verbose == 1:

434 print "$s -> Deleted -> \"%s\"" % (time.ctime (), self._mail_-name)

435 return 0

436 except OSError, e:

437 if self._verbose == 1:

438 print "$s -> Could not delete mail content file! —-> \"gs\" -> $s" % (

time.ctime (), self._mail_-name, e)

439 return —1

440

441 #####ARR SRR #AARH CLASS MyDatabase — ######RBHARBHHHBHH
442

443 class MyDatabase:

179

444
445
446
447
448

449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474

476
477
478

479
480
481

482
483
484

485
486

D Source Code D.2 Client

rrs

This class deals with all the database issues.

rrzs

def

__init__(self, error_description_file , error_desciption_path , databasename,
database_path , serverlist, project, verbose):

sy

constructor

s

self . _verbose = verbose

error = "$s/%s" % (error_desciption_path , error_description_file)

self._db_access = None
self._database_path = database_path
#check if path exists
if (1 == os.path.exists(database_path)):
if self._verbose == 1:
print "%s -> Database exists" % (time.ctime())# —— debug ——
os.chdir(database_path)
else:
#create wanted path
if self._verbose == 1:
print "$s -> Create database " % time.ctime () # —— debug ——
os.mkdir(database_path)
s.chdir(database_path)

if (0 == os.path.exists(databasename)):
try:
1. create database

self. _connect = sqlite.connect(databasename, autocommit = 1)

2. create access cursor

self._db_access = self._connect.cursor ()

3. create tables

sql = "CREATE TABLE error (e_id INTEGER NOT NULL PRIMARY KEY, e_number
INT (10) NOT NULL, e_name CHAR(200) NOT NULL, e_description CHAR
(400) NULL);"

self. _db_access.execute(sql)

Sql = "CREATE TABLE host (h_id INTEGER NOT NULL PRIMARY KEY,
h_ip _address CHAR(15) NOT NULL, h_hostname CHAR(30) NULL);"
self._db_access.execute(sql)

sql = "CREATE TABLE host_project (hp_h_id INTEGER UNSIGNED NOT NULL,
hp_p_id INTEGER UNSIGNED NOT NULL);"
self. _db_access.execute(sql)

Sql = "CREATE TABLE messages (m_id INTEGER NOT NULL PRIMARY KEY,
m_date DATE NOT NULL, m_time TIME NOT NULL, m_error_string TEXT
NOT NULL, m_line_number INT(7) NOT NULL, host_h_id INT(10) NOT
NULL, error_e_id INT(10) NOT NULL);"

180

489
490

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538

D Source Code

D.2 Client

self. _db_access.execute(sql)

sql = "CREATE TABLE project (p_id INTEGER NOT NULL PRIMARY KEY,
p_name CHAR(100) NOT NULL) ;"

self. _db_access.execute(sql)

insert data if necessary

insert error codes

error_file_fd = open(error, “r’)
content = error_file_fd.readline () # get first line
x =0
if self._verbose == 1:
print "$s -> Initialising database ...\n" % time.ctime ()
z =0
while (1) :
if (content == "\n" or content == "\t"):
content = error_file_fd.readline
else:
content = content. Istrip("{") # remove first "{”
content_list = content.split(",") # divide into pieces
left = content_list[0].strip () # remove whitespace
if (left == 70’ or left == 717): # remove non error codes
content = error_file_fd.readline ()
else:
if self._verbose == 1:
X += 1

spinning line
if (0 == x%2):

if z ==
sys.stdout.write ("-\r")
sys.stdout. flush ()
z =1

elif z == 1:
sys.stdout.write("\\\r")
sys.stdout. flush ()
z =2

elif z == 2:
sys.stdout.write("/\r")
sys.stdout. flush ()
z =3

elif z == 3:
sys.stdout.write ("/\r")
sys.stdout. flush ()
z = 4

elif z ==
sys.stdout.write ("-\r")
sys.stdout. flush ()
z =95

elif z == 5:
sys.stdout. write("\\\r")
sys.stdout. flush ()

181

539
540
541
542
543
544
545
546
547
548
549
550

552
553
554
555
556
557

558
559
560
561
562
563
564
565
566

567
568
569

570
571
572
573
574
575
576
577
578
579

580
581
582
583
584
585

D Source Code

D.2 Client

z =6

elif z == 6:
sys.stdout.write("/\r")
sys.stdout. flush ()
z =7

elif z == 7:
sys.stdout.write("/\r")
sys.stdout. flush ()
z =0

sys.stdout. flush

right = content_list[1].strip () # remove whitespace
sql = "INSERT INTO error (e_number, e_name) VALUES (%s,

\"gs\") ;" % (left, right)
self. _db_access.execute(sql)

content = error_file_fd.readline ()
if (content == 77):
break

error_file_fd.close ()
= "INSERT INTO error (e_number, e_name, e_description) VALUES (%s

sql

, \"8s\", \"8s\") ;" % (999999, "unknown", "unknown error number")

self. _db_access.execute(sql)

#insert project
sql = 7INSERT INTO project (p_name) VALUES ("%s")’ % project

self._db_access.execute(sql)

for

if

except:

i in range(len(serverlist)):

insert in host

sql = 7INSERT INTO host (h_ip_address) VALUES ("%s")’ %
serverlist[i][0]

self._db_access.execute(sql)

get host id

sql = "SELECT % FROM host WHERE h_ip_address = "$s"’ %
[i1[0]

data = self._db_access.execute(sql)

data = self._db_access.fetchall ()

host_id = data[0][0]

get project id

serverlist

sql = “SELECT % FROM project WHERE p_name = "%s"’ % project

data = self._db_access.execute(sql)
data = self._db_access.fetchall ()
project_id = data[0][0]

connect host and project

sql = 7“INSERT INTO host_project (hp_h_id, hp_p_id) VALUES (%s, $%s

)’ % (host_id , project_id)
data = self._db_access.execute(sql)

self._verbose == 1:

print "\n%s -> Database new created !" % time.ctime ()

print "$s -> Problem creating database!" % time.ctime ()

182

D Source Code D.2 Client

586 os.rmdir(self._database_path)

587 os.._exit(—1)

588 else :

589 try:

590 #check if tables there

591 # 1. connect to database

592 self. _connect = sqlite.connect(databasename, autocommit=1)

593

594 # 2. create access cursor

595 self._db_-access = self._connect.cursor ()

596

597 # 3. check if table messages is still there

598 sql = "SELECT % FROM messages"

599 self. _db_access.execute(sql)

600 data = self._db_access.fetchall ()

601 if (0 == len(data)):

602 print "$s -> No data in table \"messages\" !" % (time.ctime ())
603 else:

604 print "$s -> Database holds %s error messages !" % (time.ctime (),

len(data))

605

606 # 4. check if table error is still there

607 sql = "SELECT x FROM error"

608 self. _db_access.execute(sql)

609 data = self._db_access.fetchall ()

610 if (0 == len(data)):

611 print "$s -> Database corruption detected: Missing data in table
\"error\".\n\nIt’s recommended to delete the database and
initialise it again! It seems the original intialisation
process was not completed.\n" % (time.ctime())

612 else:

613 print "$s -> Database holds %s defined error numbers !" % (time.
ctime (), len(data))

614

615 # 5. check if table project is still there

616 sql = "SELECT * FROM host_project"

617 self. _db_access.execute(sql)

618 data = self._db_access.fetchall ()

619 if (0 == len(data)):

620 print "$s -> Database corruption detected: Missing connection
between table \"host\" and \"project\".\n\nIt’s recommended
to delete the database and initialise it again! It seems the
original intialisation process was not completed.\n" % (time.
ctime ())

621 else:

622 print "$s -> Database holds %s defined connections between table
\"project\" and \"host\" !" % (time.ctime (), len(data))

623

624 # 6. check if table host_project is still there

625 sql = "SELECT % FROM project"

626 self. _db_access.execute(sql)

627 data = self._db_access.fetchall ()

183

628
629

630
631
632
633
634

636
637
638
639
640
641

642
643

644
645
646
647
648

649
650
651
652
653

654
655

656
657
658

659
660
661
662
663
664
665
666

D Source Code

D.2 Client

if (0 == len(data)):
print "$s -> Database corruption detected: Missing project,
insert new project \"€s\" into database!\n\nIt’s recommended
to delete the database and initialise it again! It seems the
original intialisation process was not completed.\n" % (time.
ctime (), project)
#insert project
sql = 7"INSERT INTO project (p_name) VALUES ("%s")’ % project
self. _db_access.execute(sql)
else:
print "$s -> Database holds $%s defined projects !" % (time.ctime
(), len(data))

7. check if table host is still there
sql = "SELECT % FROM host"
self. _db_access.execute(sql)
data = self._db_access.fetchall ()
if (0 == len(data)):
print "$s -> Database corruption detected: Missing data in table
\"host\"\n\nIt’s recommended to delete the database and
initialise it again! It seems the original intialisation
process was not completed.\n" % (time.ctime())
else:
print "$s -> Database holds $%s defined hosts !" % (time.ctime(),
len(data))

check if the is a new host in the log file
for i in range(len(serverlist)):
#check if host is there
sql = 7“SELECT % FROM host WHERE h_ip_address = "%s"’ % serverlist
[i1[0]
self._db_access.execute(sql)
data = self._db_access.fetchall ()
if (0 == len(data)):
if self._verbose == 1:
print "$s -> Insert new host \"$s\" into database !" % (
time.ctime (), serverlist[i][0])
insert in host
sql = 7INSERT INTO host (h_ip_address) VALUES ("$s")’” % (
serverlist[i][0])
self. _db_access.execute(sql)
get host id
sql = 7SELECT % FROM host WHERE h_ip_address = "%s"’ %
serverlist[i][0]
data = self._db_access.execute(sql)
data = self._db_access.fetchall ()
host_id = data[O]["h_id"]
get project id
sql = /SELECT = FROM project WHERE p_name = "$s"’ % project
data = self._db_access.execute(sql)
data = self._db_access.fetchall ()
project_id = data[O0][O]

184

667
668

669
670
671
672
673
674
675
676

677
678
679
680
681
682
683
684
685

686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
7

=]

6
707
7

=]

8
709
710
711
712

D Source Code

D.2 Client

def

def

def

connect host and project

sql = 7INSERT INTO host_project (hp_h_id, hp_p_id) VALUES (%s

, %s)’ % (host_.id, project_id)
data = self._db_access.execute(sql)
except sqlite.DatabaseError, e:
print "$s -> %s" % (time.ctime (), e)

os._exit(—1)

execute_sql (self , wait, database_obj, sql):

rrzs

This function tries to get access to a database for

seconds. Either

the sql query gets executed or the if no acccess is possible the program

exits.
for i in range(0, wait):
try:
database_obj.execute(sql)
return 0, database_obj
except sqlite.OperationalError:
if self._verbose == 1:
if 1%20 == 0:

text = "$s —-> database temporary locked - keep trying for
another %d seconds" % (time.ctime (), wait—i)

print text
time . sleep (1)
except:
if self._verbose == 1:

print "$s -> database query execution error" % (time.ctime())

return —1, database_obj

get_access_cursor(self):

rrzs

This function returns the database access cursor.

rrs

return self._db_access

get_database_path (self):

rrzs

This function returns the database path

rrzs

return self._database_path

#unnn#nnnnnnnnnnn#t CLASS ClientThread — ###HH#RR#HH#AAHHAH

class ClientThread (threading . Thread):

rrvs

This class gets the information from the server and puts it into the database !

rrvs

def

__init__(self, shared, db_object, address, port, cl_cert,

cl_cert_path ,

ca_cert, ca_cert_path, verbose, mail_address, mail_ignore_error , smtp_server,

smtp_pass , smtp_from, user, interval, filelist):

185

713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738

739
740
741
742
743
744
745
746

747
748
749
750
751
752
753
754
755
756
757
758
759
760
761

D Source Code D.2 Client
Constructor
self. _file_list = filelist
self. _interval = interval
self. _verbose = verbose
self. _share = shared
self. _address = address
self. _port = port
self._db_access = db_object
self. _client_certificate = cl_cert
self. _client_certificate_path = cl_cert_path
self._client_ca = ca_cert
self._client_ca_path = ca_cert_path
threading . Thread. __init__(self)
create XML—reader
self. _xml_file_parser = make_parser ()
turn off namespace
self. _xml_file_parser.setFeature (feature_namespaces, 0)
self. _smtp_password = smtp_pass
self. _mail_obj = []
if self._smtp_password != None:
for i in range(len(mail_address)):
obj = Mail(mail_address[i], smtp_server, smtp_pass, smtp_from, user,

def

verbose)
self. _mail_obj.append ((obj, mail_address[i]))

for i in range(len(self._mail_obj)):
name = self._address+"-"+self._mail_obj[i][1]
self. _mail_obj[i][0].create_content (name)

overwrite the default ContextHandler with my own

self . _my_handler = MyContentHandler(self._db_access, self._address,
mail_ignore_error , self._mail_obj, self._verbose)

self. _xml_file_parser.setContentHandler (self._my_handler)

self. _stop_thread = False # variable to indecate thread termination

run(self):

rrzs

This functions overwrites the standard run method.

rrzs

filenames = []

if ((0 == len(self. _file_list)) & (self._stop_thread == False)):
if no old xml files fetch your own xml file
try:
if self._verbose == 1:

print "$s -> Client %d connecting to server %s" % (time.ctime(),

thread . get_ident (), self._address)

186

762
763
764

766
767
768
769
770

771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
187
788
789
790
791
792
793
794
795
796
797

798
799
800

801
802
803
804
805
806
807
808
809
810

D Source Code

D.2 Client

try:
#if self._verbose == 1:
print “try to connect: ”,self._address
connect = self. _connect_to_server(self._address, self._port)
#if self._verbose == 1:
print "connected —> ", connect
except:
if self._verbose == 1:
print "$s -> Could not connect to host \"$s\"" % (time.ctime
(), self._address)
if (self._smtp_password != None):
for g in range(len(self._mail_obj)):
self. _mail_obj[g][0].delete_content ()
self. _stop-thread = True
if (self._stop_thread == False):
get file names
try:
if self._verbose == 1:
print "$s -> Get file names !!!" % time.ctime ()
filenames = connect. get_file_list ()
if ((—3 == filenames) & (self._stop_thread == False)):
server is busy parsing
check = self._wait(connect)
if check ==
filenames = connect. get_file_list ()
if (=3 == xml_content):
terminate thread
self. _stop_-thread = True
if ((—2 == filenames) & (self._stop-thread == False)):
if self._verbose == 1:
print "$s -> RPC calls disabled !" % time.ctime ()
self. _stop-thread = True
if ((filenames == 0) & (self._stop_-thread == False)):
filenames = []
if self._verbose == 1:
print "$s -> $%s files to fetch " % (time.ctime (), len(
filenames))
except:
if self._verbose == 1:
print "$s -> Could not connect (check) to IP \"$s\"" % (
time.ctime (), self._address)
if (self._smtp_password != None):

for g in range(len(self._mail_obj)):
self. _mail_obj[g][0].delete_content ()

self. _stop_-thread = True

if ((0 < len(filenames)) & (self._stop_-thread == False)):
fetch files
for g in range(len(filenames)):
xml_content = connect.get_my_xml_file(filenames[g])

if

(—3 == xml_content):

187

D Source Code D.2 Client

811 if self._verbose == 1:

812 print "$s -> Parsing in progress ..." % time.ctime ()
813 check = self._wait(connect)

814 if check == 0:

815 xml_content = connect.get_my_xml_file(filenames[g])
816 if (-3 == xml_content):

817 # terminate thread

818 self. _stop_thread = True

819 break

820 if (=2 == xml_content):

821 if self._verbose == 1:

822 print "$s -> RPC calls disabled !" % time.ctime ()
823 self. _stop_-thread = True

824 break

825 if (xml_content == "no file"):

826 # there is no new file available

827 if self._verbose == 1:

828 print "$s -> No file available !!!" % time.ctime ()
829 self. _stop_thread = True

830 break

831

832 # name of temporary XML file

833 name = "%s_client_xml_file %d.xml" % (self._address, g)
834 # lock critical section

835 self. _share.lock ()

836 try:

837 c=g

838 while (1) :

839 if (0 == os.path.exists (name)):

840 # save xml file locally

841 name = "$s_client_xml_file %d.xml" % (self.

_address , c¢)

842 file_fd = open(name, “w’)

843 file_fd.write(xml_content)

844 file_fd .close ()

845 self. _file_list.append(name)

846 break

847 name = "%s_client_xml_file_%d.xml" % (self._address,
c)

848 c += 1

849 finally :

850 # unlock critical section

851 self. _share.release ()

852 except SSL.SSLError, e:

853 if self._verbose == 1:

854 print "$s -> Connection error (server \"$s\"): %s !" % (time.

ctime (), self._address, e)

855 self. _stop_-thread = True

856 except:

857 if self._verbose == 1:

858 print "$s -> Error connecting to server —> \"$s\" I" % (time.

ctime (), self._address)

188

859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882

883
884
885
886
887

888
889
890
891
892
893

894
895
896
897
898
899
900
901
902
903
904
905

906

D Source Code

D.2 Client

self. _stop_thread = True

if ((0 < len(self. _file_list)) & (self._stop_thread == False)):
deal with own generated file list
for g in range(len(self. _file_list)):

name = self. _file_list[g]
if self._address == None:
dbpath = "85/ self._db_access.get_database_path ()
ad = re.sub(dbpath, "", self. _file_list[g])
print ad
ad = re.sub(’_client_xml_file [0-9]+.xml’, "", ad)
self._my_handler.set_ip (ad)
try:
file_fd = open(name, ’r’)
except IOError, e:
print e
self. _stop-thread = True
break # aborts for or while loop

write in database

z =0
while (1) :
try:
if ((0 == self._share.set_variable(self)) & (self.
stop-thread == False)):
try:

self._xml_file_parser.parse(file_fd)
except xml.sax.SAXParseException,e
if self._verbose == 1:
print "$s -> sax parser error: %s" % (time.ctime

0. e)

self. _share.reset_variable ()
if (None != self._smtp_password):
if mail is sendable
for a in range(len(self._mail_obj)):
self. _mail_obj[a][0].send_mail(self._mail_obj[a
1011, self._address)

file_fd.close ()
os.remove (name)
if (self._smtp_password != None):
for g in range(len(self._mail_obj)):
self. _mail_obj[g][0]. delete_content ()
break
else:
z += 1
if z == 10:
if self._verbose == 1:
print "$s -> can not access database —->
terminating” % time.ctime ()
break

189

907
908
909
910
911

912
913
914
915
916
917
918
919
920

921
922
923
924
925
926
927
928
929
930

931
932
933
934

935
936
937
938
939
940
941
942
943
944
945
946
947

948
949
950
951
952
953

D Source Code

except AssertionError:
file_fd.close ()
if self._verbose == 1:
print "$s -> can not access database -> terminating" %
time . ctime ()
if (self._smtp_password != None):
for g in range(len(self._mail_obj)):
self. _mail_obj[g][0].delete_content ()

break
except:
file_fd.close ()
if self._verbose == 1:

print "$s -> problem processing XML file -> terminating"

% time .ctime ()
if (self._smtp_password != None):
for g in range(len(self._mail_obj)):
self. _mail_obj[g][0].delete_content ()

else :

break
if (self._smtp_password != None):
for g in range(len(self._mail_obj)):
self. _mail_obj[g][0].delete_content ()
print "$s -> client_thread %s STIRBT nun !!!" % (time.ctime (),thread.

get_ident ())

_wait(self, connect_object):

This function waits 1if the server 1is busy parsing the log file (busy waiting)

counter = 0

max_sleeping_time = 60 * self._interval
sleeped = 0
while (1) :
check again
check = connect_object.rpc_check_availabitity ()
if check ==
return 0

counter += 1
if (counter == 30):

if self._verbose == 1:

print "$s -> Server takes a long time to parse file -> thread
terminating” % time.ctime ()# —— debug ——

return —1
sleep for ten seconds and try again
sleeped += 10
if sleeped > max_sleeping_time:

return —1

time . sleep (10)

D.2 Client

D Source Code D.2 Client

954

955 def _connect_to_server(self, server, port):

956 o

957 This function establishes the connection to the server.

958 rrr

959 serverus = server

960 ctx = self.create_ctx ()

961 # connect to server via SSL using the created context

962 urladdress = "https://%s:%d" % (serverus, port)

963 server = Server(urladdress , SSL_Transport(ctx))

964 # return server object

965 return server

966

967 def create_ctx (self):

968 sy

969 The function creates the necessary SSL context using certificates.

970 sy

971 ctx = SSL.Context(protocol="ssiv3’) # use SSLv3 only

972 ctx.load_cert(self. _client_certificate_path+"/"+self. _client_certificate)

load client certificate
973 ctx.load_client _CA (self. _client_ca_path+"/"+self. _client_ca) # load
certificate authority private key
974 # if self._verbose == 1:
975 # ctx.set_info_callback () # tell me what you’'re doing —
debug ——

976 ctx.set_session_id_ctx (“server’) # session name

977 return ctx

978

979 ####A##HARS ARG HARE CLASS WorkerThread — ##H##ARBHARBHARBH#H

980

981 class WorkerThread (threading . Thread):

082 s

983 This class is responsible for starting the ClientThreads within a certain
interval.

984 1o

985

986 def __init__(self, shared, db_object, interval , serverlist, cl_cert, cl_cert_path
, ca_cert, ca_cert_path, verbose, mail_address, mail_ignore_error ,
smtp_server , smtp_pass, smtp_from, user):

987 (a4

988 Constructor

989 sy

990 self. _verbose = verbose

991 self._share = shared

992 self._db_access = db_object

993 self._interval = interval

994 self. _serverlist = serverlist

995 self. _client_certificate = cl_cert

996 self. _client_certificate_path = cl_cert_path

997 self. _client_ca = ca_cert

998 self . _client_ca_path = ca_cert_path

999 self. _mail_address = mail_address

191

D Source Code D.2 Client

1000 self. _mail_ignore_error = mail_ignore_error

1001 self . _smtp_server = smtp_server

1002 self . _smtp_pass = smtp_pass

1003 self . _smtp_from = smtp_from

1004 self . _smtp_user = user

1005 self. _list = []

1006 threading . Thread. __init__(self)

1007

1008 def run(self):

1009 s

1010 This function overwrites the standard run method.

1011 e

1012

1013 temp-list = []

1014

1015 while (1) :

1016 # deal with not processed, but fetched XML files first

1017 #find files

1018 os.path.walk(self._db_access.get_database_path (), self._parse_directory ,
self. _list)

1019 if (0 < len(self. _list)):

1020 temp_list = copy.deepcopy(self. _list)

1021 self. _thread = ClientThread (self. _share, self._db_access, None, None

, self. _client_certificate , self. _client_certificate_path , self.
_client_ca, self._client_ca_path , self._verbose, self.
_mail_address , self._mail_ignore_error, self._smtp_server, self.

_smtp_pass , self._smtp_from, self._smtp_user, self._interval ,

temp_list)

1022 self. _thread.start ()

1023 del self. _list[:] # delete list content

1024

1025 # then initiase new XML file fetching

1026 for i in range(len(self._serverlist)):

1027 dummy_list = []

1028 # start thread for fetching log file

1029 self. _thread = ClientThread (self. _share, self._db_access, self.
_serverlist[i1][0], self._serverlist[i][1], self.
_client_certificate , self._client_certificate_path , self.
_client_ca, self._client_ca_path , self._verbose, self.
_mail_address , self._mail_ignore_error, self._smtp_server, self.
_smtp_pass , self._smtp_from, self._smtp_user, self._interval ,
dummy_list)

1030 self. _thread.start ()

1031

1032 if self._verbose == 1:

1033 print "\n%s -> sleeping for %d minutes\n" % (time.ctime (), (self.
_interval))

1034 time.sleep(self. _interval x60)

1035

1036

1037 def _parse_directory(self, arg, dirname, fnames):

1038 a4

192

D Source Code D.2 Client

1039 This function "walks" through a given directory and considers all srbLOG*.gz
files. The name and last modified time are saved in a list (2 dimensional
array). The function should be used with os.path.walk (path,

function_name, arg)!

1040 84

1041 d = os.getcwd ()

1042 # change into log file directory

1043 try:

1044 os.chdir(dirname)

1045 except:

1046 print "could not find directory \"$s\"" % dirname

1047 return —1

1048 # for each file

1049 for f in fnames:

1050 # check if file and if file is a log file e.g. srbLog.20051003.¢gz

1051 if (not os.path.isfile(f)) or (None == re.search(’client_xml_file [0-9]+.

xml’, f)):

1052 continue

1053 else:

1054 # save filename into an arrray (list)

1055 filus = dirname+"/"+f

1056 self. _list.append(filus)

1057 # change back into the working directory

1058 os.chdir(d)

1059

1060

1061 #######RBHARRH#ARY CLASS Mutex #H#ARBHAHBHH#ARH#HAH

1062

1063 class Mutex:

1064 rr

1065 This class makes sure that only one client is writing into the database. This is
necessary since sqlite 1is not trhead safe within a process! Futhermore 1is
provide the possiblity to synchronise thread accessing critical sections.

1066 4

1067 # database lock

1068 _db_locked = threading.Lock()

1069 # critical section lock

1070 _locked = threading.Lock()

1071

1072 def __init__(self):

1073 [

1074 Constructor

1075 [

1076 self . writing = 0

1077 self . _the_thread = 0

1078

1079 def set_variable (self, threadus):

1080 s

1081 set variable writing

1082 [

1083 Mutex . _db_locked . acquire () # lock

1084 # if nobody is accessing the database

193

D Source Code D.2 Client

1085 if self.writing == O:

1086 #set variable

1087 self. writing = 1

1088 self . _the_thread = threadus

1089 Mutex . _.db_locked .release ()

1090 return 0

1091 else:

1092 if (1 != self._the_thread.isAlive()):
1093 # if the thread, which set the variable is dead, reset variable
1094 self.writing = 0

1095 Mutex . _.db_locked .release () # release lock
1096 return —1

1097

1098 def reset_variable (self):

1099 s

1100 reset variable writing

1101 rr

1102 Mutex . _db_locked . acquire () # lock

1103 self . writing = 0

1104 self . _the_thread = 0

1105 Mutex . _db_locked.release ()

1106

1107 def lock(self):

1108 (a4

1109 This functions acquires the look.

1110 [

1111 Mutex . _locked . acquire ()
1112

1113 def release(self):

1114 [

1115 This function releases the lock.
1116 s

1117 Mutex . _locked . release ()

D.2.3 Module utils client.py

LISTING D.7: Module utils_client.py

#!/usr/bin/env python

rrzs

This module provides basic funcitons for the client_classes.py and start_client.py.

AW

()

Reading University
MSc in Network Centered Computing

a.weise - a.weisel@reading.ac.uk - December 2005

rros

© ® 9 o

10 import ConfigParser, string, os, sys, termios

194

D Source Code D.2 Client

12 def LoadConfig(file_name , config={}):

13 mmwn

14 returns a dictionary with key’s of the form
15 <section>.<option> and the values

16

17 source: http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/65334
18 mwn

19 config = config.copy ()

20 cp = ConfigParser.ConfigParser ()

21 cp.read(file_name)

22 for sec in cp.sections():

23 name = string.lower(sec)

24 for opt in cp.options(sec):

25 config[name + "." + string.lower(opt)] = string.strip(cp.get(sec, opt))
26 return config

27

28 def check_ip(ip):

29 s

30 This function check if a given IP is valid.
31 s

32 try:

33 ip = ip.split(".")

34 except AttributeError:

35 return —1

36

37 for i in range(len(ip)):

38 check = ip[i].find("0", 0, 1)

39 if —1 != check and 1 < len(ip[i]):

40 return —1

41 try:

42 ip[i] = int(ip[i])

43 except ValueError:

44 return —1

45 if ip[i] >= 0 and ip[i] <= 255:

46 pass

47 else:

48 return —1

49

50 return 0

51

52 def usage_exit(progname, msg=None):

53 rrr

54 This function gives usage help and exits script.

55 rr

56 if msg:

57 print msg

58 print # [f cr

59 print "usage: python %s [-h|--help -c|--config -p/|--smtp_passord -v|--verbose -d
|-—daemon] \n\n" % progname

60 os._exit(—1)

61

62 def get_password (msg):

195

63

64
65

66

67

68

69
70
71
72
73
74
75

76
77
78
79
80
81
82
83
84
85
86
87
88
89

D Source Code

D.2 Client

rrs

This function reads from stdin without echoing the input.

source: http://gnu.kookel.org/ftp/www.python.orqg/doc/faq/library.html

modified by a. weise December 2005
fd = sys.stdin. fileno ()
turn off stdin’s echoing
old = termios.tcgetattr (fd)
new = termios.tcgetattr (fd)
new[3] = new[3] & “termios .ICANON & ~“termios .ECHO
new[6][termios .VMIN] = 1
new[6][termios .VITIME] = 0
termios.tcsetattr (fd, termios .TCSANOW, new)
s =77 # save the characters typed and add them
try:
print
print msg
while 1:
¢ = os.read(fd, 1)
if ¢ == "\n":
break
S = s+C
finally:
turn on stdin’s echoing again
termios . tcsetattr (fd, termios.TCSAFLUSH, old)
return s

together

D.2.4 Script stop client.sh

LI1STING D.8: Script stop_client.sh

#!/bin/sh
#

Script to shutdown client daemon

#

Reading University

MSc in Network Centered Computing

a.weise — a.weise@reading.ac.uk — December 2005
#

echo "stopping client

"

name=start_client .py

Find all clients
client_pid=‘ps —elf | egrep $name | egrep —v grep | awk

#echo $client_pid

{ print $4 } ¢

196

18
19
20
21
2
23
24
25
26
27
28
29
30
3
32

D Source Code D.3 Virtualiser
if ["Sclient_pid" = "n |
then
echo No client is running !
else
/bin/kill —15 $client_pid
sleep 3
client_pid=‘ps —elf egrep $name | egrep —v grep | awk '{ print $4 }’°
if ["Sclient_pid" = ""]
then
echo client stopped
else
/bin/ kill =9 $client_pid
echo client killed
fi
fi

D.3 Virtualiser

D.3.1 Module gui.py

LI1STING D.9: Module gui.py

#!/usr/bin/env python

rrvs

This Module is the start module for the display tool.

Reading University

MSc in Network Centred Computing

a.weise — a.weisel@reading.ac.uk — December 2005

rrzs

import gui_classes

import os,

database

import

getopt, sys, re, time

sqlite

functions

from gui_utils import usage_exit, check_date,
help_-context , check_time, LoadConfig

class Display:

rrvs

convert_date ,

This is main class for the gui application.

rrvs

def

__init__(self, config):

7

’

7

check_ip ,

find_item ,

197

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4
4
43
44

45

46
47
48
49
50

51
52
53
54
55
56
57
58
59
60

6
62
63
64
65
66
67
68
69
70

D Source Code D.3 Virtualiser

Constructor

rrzs

workingpath = os.getcwd ()

self . _database_name = config.get("database.name")

self. _database_path = config.get("database.path")

self. _database_path = self._database_path.rstrip("/")

if (config.get("database.path") == 7’/ or config.get("database.path") == None):
field is empty
self. _database_path = workingpath

else:
self. _database_name = self._database_name.strip ()
if (-1 != self._database_path.find("/", 0, 1)):
first character /7
pass
else:
self. _database_path = workingpath+"/"+self. _database_path

if (0 == os.access ((self._database_path+"/"+self._database_name), 4)): # 4
—> R.OK
print "\nCould not access database under \"%s\" !\nMaybe change
configuration file and try again!/\n\n" % (self._database_path+"/"+
self . _database_name)

os. _exit(—1)

def execute_sql(self, wait, database_obj, sql, col):
rrs
This function tries to get access to a database for "wait" seconds. Either
the sql query gets executed or the if no acccess is possible the program

exits.

rrvs

for i in range (0, wait):
try:
database_obj.execute(sql)
data = database_obj.fetchall ()
return data
except sqlite.OperationalError:
if i%10 == 0:

text = "database temporary locked - keep trying for another 3%d
seconds" % (wait—i)

if col == 1:
col_obj = gui_classes.Colour ()

text = col_obj.yellow (text)
print text
time . sleep (1)

text = "Database busy, could not apply request. Please try again."
if col == 1:
text = col_obj.yellow(text)

198

D Source Code D.3 Virtualiser

71 print text, "\n\n"

72 os._exit(0)

73

74 def sql_host(self, col):

75 s

76 This function gets all hosts from the database.

77 sy

78 sql = 7 SELECT * FROM host, host_project, project’\

79 ’ WHERE host.h_id = host_project.hp h_id ’\

80 / AND host_project.hp_p_id = project.p_id’

81

82 database = self._database_path+"/"+self._database_name

83

84 connect = sqlite.connect(database, autocommit = 1)

85 db_access = connect.cursor ()

86 data = self.execute_sql (120, db_access, sql, col)

87 return data

88

89

90 def sql_project(self, col):

9] sy

92 This function gets all projects from the database

03 s

94 sql = 7 SELECT # FROM project '

95 database = self._database_path+"/"+self._database_name

96 connect = sqlite.connect(database, autocommit = 1)

97 db_access = connect.cursor ()

98 data = self.execute_sql (120, db_access, sql, col)

99 return data

100

101

102 def sql_error(self, col, dl = None, d2 = None, tl = None, t2 = None, host = None,
project = None, error = None):

103 4

104 This function gets all error messages from the database.

105 rry

106 where = 0

107 sql = 7 SELECT % FROM error, messages, host, host_project, project ’

108

109 if dl != None and d2 != None:

110 # between datel and date2

111 sql += / WHERE '

112 where = 1

113 sql += / messages.m _date BETWEEN "$s" AND "$s" ’ % (dl, d2)

114

115 elif dl != None and d2 == None:

116 # from datel until now

117 sql += / WHERE '

118 where = 1

119 now = time.strftime ("%3Y-%m-%d", time.localtime ())

120 sql += ’ messages.m _date BETWEEN "&s" AND "$%s" ’ % (dl, now)

121

199

122
123
124
125
126
127
128
129
130
131

167
168
169
170
171
172

D Source Code

D.3 Virtualiser

11—

elif dl None and d2
until date2
sql += / WHERE ~’

None :

where = 1
start. = "1970-01-01"
sql += ’/ messages.m _date BETWEEN "%s" AND "$s" ’ % (start_, d2)
else:
pass
if where == 0:
sql += / WHERE '
where = 1
else:
sql += 7 AND ’
if t1 != None and t2 != None:
between datel and date2
sql += ’/ messages.m _time BETWEEN "$%s" AND "%s" ’ % (tl, t2)
sql += 7 AND ’
elif t1 != None and t2 == None:
from datel until now
now = time.strftime ("$H:8M:%8S", time.localtime ())
sql += ’/ messages.m_time BETWEEN "%s" AND "$s" ’ % (tl, now)
sql += 7 AND
elif t1 == None and t2 != None:
until date2
start. = "00:00:00"
sql += ’/ messages.m_time BETWEEN "%s" AND "$s" ’ % (start_-, t2)

sql += 7 AND ’

sql += ’ messages.error_e_id

if error != None:
sql += 7 AND (’
for i in range(len(error)):

sql += ’ error.e_number
if len(error) > (i+1l):
sql += 7 OR ’

sql += 7) 7
if host != None:
sql += / AND messages.host_h_id =
’ % host
elif host == None:
sql += / AND messages.host_h_id =
sql += 7 AND host.h_id = host_project
’/ AND host_project.hp_p id =

error.e_id 7/

no nos 3
g
\"8s\ % error[i]

host.h_id AND host.h_ip_address

nogon
oS

host.h_id ’

.hp_h_id

A\

project.p_id '’

200

D Source Code D.3 Virtualiser

173 if project != None:

174 sql += 7 AND project.p_name = "$s" ’ % project

175

176

177 sql += ’ORDER BY messages.m_date, messages.m_time’

178

179 database = self._database_path+"/"+self._database_name
180 connect = sqlite.connect(database, autocommit = 1)

181 db_access = connect.cursor ()

182 data = self.execute_sql (120, db_access, sql, col)

183 return data

184

185 def display_graph(self, dataset, col, file_-fd = None):

186 sy

187 This function displays a barchart diagram containing Error Numbers and the

corresponding Frequency

188 sy

189 field = []

190 field_label = []

191 table_error = []

192 for i in range(len(dataset)):

193 # prepare data

194 index = find_item (int(dataset[i][’error.e_number’]), field)

195 if (None == index):

196 field .append ([int(dataset[i][’error.e_number’]), 1])

197 field_label .append ([int(dataset[i][’error.e_number’]), 1])

198 table_error.append([int(dataset[i][’error.e_number’]), 1, dataset[i

1[’error.e_name’1])

199 else:

200 count = field[index][1]

201 count += 1

202 field[index |[1] = count

203 field_label[index][1] = count

204 table_error[index][1] = count

205

206 field.sort ()

207 field_label.sort ()

208 table_error.sort ()

209

210 h_line = "

211 v_line = "/"

212 header = "\nFrequency of Errors: \n"

213

214 if file_fd != None:

215 content = header

216 content += "\n\n Nr. | Error Number\t| Frequency\t| Error Name\t\t\t\n\
nm

217 file_fd .write (content)

218

219 if col == 1:

201

220
221
222
223
224
225
226
227

228
229
230
231

232
233
234

235
236
237
238
239
240
241
242
243
244
245
246
247

248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

D Source Code

D.3 Virtualiser

col_obj = gui_classes.Colour ()

header = col_obj.yellow (header)
h_line = col_obj.yellow(h_line)
v_line = col_obj.yellow(v_line)

print header
print h_line
print " Nr.
Name\t \t\t"
print h_line

for i in range(len(table_error)):

"+v_line+" Error Number\t"+v_line+" Frequency\t"+v_line+" Error

print " $5d %s $7s\t%s %$6s\t%s %s" % ((i+1), v_line, table_error[i][O],

v_line , table_error[i][1], v_line, table_error[i][2])

if file_fd != None:

content = " %5d | %7s\t/| %6s\t/ %s\n" % ((i+1), table_error[i][0],

table_error[i][1], table_error[i][2])

file_fd.write(content)
print h_line
for i in range(len(field)):
field_label [1][0] = (i+1)
field_label[i][1] = "&d" % field[i][O0]
field[i][0] = (i+])
window = []
pic-obj = gui_classes.Picture(col, window)
pic-obj.show_barchart("Diagram \"Error Number - Frequency\"", field,
field_-label , "ERROR NUMBER", "FREQUENCY", dataset, select_type = "error"
, filus_fd = file_fd, descript = "Diagram \"Error Number - Frequency\"")
pic-obj.mainloop ()
(e ddaddadddaddaddaadddadsadddadaddsadidadssaddadidarsadssadtad
def start():
Start the application.
verbose = 0
col =1
graph = 0
filus = None
configfile = ""

sql_host = None
sql_project = None
sql_error = None
sql_error_freq = None
datel = None

202

267
268
269
270
271
272
273
274
275
276
277

278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315

D Source Code

D.3 Virtualiser

date2 = None
timel = None
time2 = None
ip = None

port = None
project = None
error = None

evaluate parameters
try :
opts, args = getopt.getopt(sys.argv[l:], “c:vhg’,

graph’, ’“nocolor’, ’"help’, ’sqgl_host’, ’sqgl_project’,

sql_error_freq’, ’start_date=’, ’end _date=’,

/ip=’, ’‘port=’, ’‘project=’, ’‘error=’ , ’‘file="])

for opt, value in opts:
if opt in (’’, “—--nocolor’):
col =0
if opt in (’/-h’,’--help’):
msg = help_context(col)
usage_exit(sys.argv[0], msg, col)
if opt in (’-c’, "—--config’):
value = value.replace("=", "")
configfile = os.getcwd()+"/"+value
if opt in (’/-v’, ’--verbose’):
verbose = 1
if opt in (’-g’, "—-—-graph’):
graph =1

for opt, value in opts:
if opt in (’’, ’--sqgl_host’):
sql_host =1
if opt in (’/’, ’--sgl _project’):
sql_project = 1
if opt in (’’, ’--sqgl _error’):
sql_error =1
if opt in (’’, ’'--sqgl_error freqg’):
sql_error_freq =1
if opt in (’’/, ’'——error’):
error = value
error = error.strip ()
error = error.strip(”,")
error = error.split(”,")
for i in range(len(error)):
error[i] = error[i].strip ()
try:
error[i] = int(error[i])
except ValueError, e:

#’given error is not valid’

[“config=",

/start_time=’,

’verbose’, ’/

’sql_error’, ’

‘end_time="’,

usage_exit(sys.argv[0], ’“invalid literal for int()’ , col)

if opt in (’’/, ’"—--start_date’):

datel = value

status = re.search(’”"[0-3][0-9].[0-1][0-9].[1-9][0-9]{3}’, datel)

203

D Source Code D.3 Virtualiser

316 if (None == status):

317 usage_exit(sys.argv[0], ’“given date is not valid’, col)

318 else:

319 datel = status.string[status.start():status.end()]

320 if (0 == check_date(datel)):

321 datel = convert_date (datel)

322 else:

323 usage_exit(sys.argv[0], ’‘given date is not valid’, col)

324 if opt in (’’,’-—-end _date’):

325 date2 = value

326 status = re.search(”"[0-3][0-9].[0-1][0-9].[1-9][0-9]{3}’, date2)

327 if (None == status):

328 usage_exit(sys.argv|[0], “given date is not valid’, col)

329 else:

330 date2 = status.string[status.start():status.end()]

331 if (0 == check_date(date2)):

332 date2 = convert_date (date2)

333 print "date 2: ", date2

334 else :

335 usage_exit(sys.argv[0], ’‘given date is not valid’, col)

336 if opt in (’’/, ’——-start_time’):

337 timel = value

338 status = re.search(’"[0-2][0-9]:[0-5][0-9]:[0-5][0-9]", timel)

339 if (None == status):

340 usage_exit(sys.argv[0], “given time is not valid’, col)

341 else:

342 timel = status.string[status.start():status.end()]

343 if (0 == check_time (timel)):

344 pass

345 else:

346 usage_exit(sys.argv[0], “given time is not valid’, col)

347 if opt in (’’/, "—-—end time’):

348 time2 = value

349 status = re.search(”"[0-2][0-9]:[0-5][0-9]:[0-5][0-9]’, time2)

350 if (None == status):

351 usage_exit(sys.argv[0], “given time is not valid’, col)

352 else:

353 time2 = status.string[status.start():status.end()]

354 if (0 == check_time(time2)):

355 pass

356 else:

357 usage_exit(sys.argv[0], “given time is not valid’, col)

358 if opt in (’’/,’ —ip’):

359 ip = value

360 status = re.search(’"[0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3}’, ip
)

361 if (None == status):

362 usage_exit(sys.argv[0], “given IP is not valid’, col)

363 else:

364 ip = status.string[status.start():status.end()]

365 if (0 == check_ip(ip)):

366 print "ip: ", ip

204

367
368
369
370
371
372

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

D Source Code

D.3 Virtualiser

else:

usage_exit(sys.argv[O0],

if opt in (’’/, ’'——port’):

port = int(valu

if (port < 1024 or port > 50001):

usage_exit(sys.argv[O],

€)

‘given IP is not valid’, col)

"Server port is out of range! \nMake sure

the server port lies between 1025 (inclusive) and 50000 (

inclusive) !'\n\n",

if opt in (’’/,’-—-project’):

project = value

if opt in (’7, '——file’):

filus = value

except getopt.error, e:

e =

"gs" % (e)

usage_exit(sys.argv[0],

except ValueError, e:

e =

"gsm % (e)

usage_exit(sys.argv[0],

load config file

if (configfile != ""):
check if file exists

if (1

== os.path.exists(configfile)):

config = LoadConfig(configfile)

else:

else:
msg = "\nNo config file spezified !
usage_exit(sys.argv[0], msg, col)
if col == 1:
col_obj = gui_classes.Colour()
gui = Display(config)
if verbose == 1:
i =1
d = config.iteritems ()
while (1) :
try:
print i, ". ", d.next()
i +=1
except:
break
if filus != None:

if file NOT exists

print "\n\nSorry, a given config file does NOT exist

'\n\n"

os._exit(—1)

save output in file
check if file exists

e, col)

e, col)

or default values

terminate program

!'\nPlease try again

205

416
417
418
419
420
421
422

423
424
425
426
427
428
429
430

431
432
433
434
435
436
437
438
439
440
441
442
443
444

445
446
447
448
449
450
451
452
453

454
455
456
457
458

459

D Source Code

D.3 Virtualiser

try:
filus_fd =
quest =

file (filus , “r”)
"File \"%s\" already exists,
== 1:

quest =

overwrite file (y/n)
if col
col_obj.darkred (quest)
decision = raw_input(quest)
Tyt
or decision ==

== or decision == ‘Y’ or decision ==

’YES’:

if decision
"Yes’
filus_fd .close ()
filus_fd = file (filus ,
else:

‘yes’

'W’)

os._exit(0)
except IOError:
filus_fd = file (filus ,

/W/)

SQL COMMANDS

#

7#

if (1
print
data =

== sql_host):
"sgl_host: ", sql_host

gui.sql_host(col)

if len(data) ==
text = "\n\nSorry,
== 1:

text =

no data available for you request!"
if col
col_obj.yellow (text)
print text

print "\n\n"

os._exit(0)

h_line = "

v_line = "/ "

if col == 1:
h_line = col_obj.yellow(h_line)
v_line = col_obj.yellow(v_line)

table head
print h_line
" Nr.\t"+v_line+"\tHost IP\t\t\t"+v_line+"

" Project "

print Host Name
print h_line

table data

for i in range(len(data)):
print " 2d\t%s\t%s\t\t%s %17s %s %s" % ((i+1), v_line,
h_ip_address’], v_line, data[i][’host.h_hostname’],

project.p_name’])

print h_line

P>

v_line ,

"% filus

or decision

"+v_line+

data[i][’host.

data[i][”

206

461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476

478
479

481
482
483
484
485
486
487
488

489
490
491
492
493
494
495

496
497
498
499
500
501
502
503
504
505
506

507
508

D Source Code

D.3 Virtualiser

elif (1

== sql_project):

print "sgl_project: ", sql_project

data = gui.sql_project(col)

if len(data) == O0:

text = "\n\nSorry,

if col ==

text

1:

= col_obj.yellow (text)

print text

print "\n\n"
os._exit(0)

h_line

v_line = "/"

if col == 1:
h_line =

v_line =

table head
print h_line

col_obj.yellow(h_line)
col_obj.yellow(v_line)

print v_line+" Nr.\t"+v_line+"\tProject\t\t\t"+v_line

print h_line

table data

for i in range(len(data)):

print "$s

2d\t%s\tgs\t\t%s" % (v_line, (i+1), v_line,

v_line)

print h_line

elif (1 == sql_error):

data = gui.sql-error(col, dl=datel, d2=date2, tl = timel,

ip, project = project, error = error)

if len(data)

text = "\n\nSorry, no data available for you request!"

if col ==

text

1:

= col_obj.yellow (text)

print text

print "\n\n"
os._exit(0)

table head
h_line = "

v_line = "/"

h_line_short

no data available for you request!"

data[i][’p_name’],

time2 , host =

207

D Source Code D.3 Virtualiser

510
511
512
513
514
515
516
517
518
519
520
521

523
524
525
526
527
528
529
530
531
532

533
534
535
536
537

header = " Nr. | Date / Time [\t\t\t\tError String"
In = "LN"
en = "EN"
ip = "1p"
pr = "PR"

brown_line

if col

brown_line
h_line
v_line
h_line_
header

In
en
ip
pr

= h_line

= col._
= col._

short

= col._
col_obj
col_obj
col_obj
col_obj

print h_line

print header

if filus

content =

None:
" Nr.\t/ Date / Time /

Line Number | Error Number |

col_obj.brown(h_line)
obj.yellow(h_line)
obj.yellow(v_line)

= col_obj.yellow(h_line_short)
obj.yellow (header)

.yellow (1In)
.yellow (en)
.yellow (ip)
.yellow (pr)

filus_fd.write(content)

print h_line

table data console

\t\t\t\tError String\t\t\t\t

Host IP | Project\n\n"

for i in range(len(data)):

print "$6d %s %10s $%s %6s %s %70s" % ((i+1), v_line, data[i][messages.
m_date’], v_line, data[i][’messages.m _time’], v_line, datal[i][~’
messages.m_error._string’])

print "$s: %7s %s %s: %65 %s %s: %15s %s %s: %s" % (In, data[i][messages
.m_line_number’], h_line_short, en, data[i][’error.e_number’],
h_line_short, ip, data[i][’host.h_ip address’], h_line_short, pr,
data[i][’project.p_name’])

table data file
if filus != None:
content = " gd\t/ %10s | %6s | %70s | %10s | %10s | %15s | %s \n"
% ((i+1), data[i][’messages.m _date’], data[i][messages.m _time’],
data[i][“messages.m_error_string’], datal[i][messages.
m_line_number’], data[i][’error.e _number’]|, datal[i][’host.
h_ip_address’], datali][’project.p_name’])
filus_fd . write(content)

545
546
547
548
549
550

if len(data) > (i+1):

print h_line

print brown_line

551

552
553
554
555
556
557
558
559
560
561
562
563

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585

586
587
588
589
590
591
592
593
594
595
596
597
598

D Source Code D.3 Virtualiser

print "\nAbbreviations:\n\n%s - Line Number in original SRB log file\n%s -

Error Number\n$s - Host IP Address\n%s - Project\n\n" % (In, en, ip, pr)

if graph == 1:
if filus != None:
gui.display_graph(data, col, file_fd = filus_fd)
else:
if filus != None:
filus_fd .close ()
gui.display_graph(data, col)

elif (1 == sql-error_freq):

data = gui.sql_error(col, dl=datel , d2=date2, tl = timel, t2 = time2, host =
ip, project = project, error = error)

if len(data) == O0:
text = "\n\nSorry, no data available for you request!"
if col == 1:
text = col_obj.yellow (text)
print text
print "\n\n"
os._exit(0)

print "datasets: ", len(data)
#print data
if graph == 0:

field = []

field_label = []
table_error = []

for i in range(len(data)):
index = find_item (int(data[i][’error.e_number’]), field)
if (None == index):
field .append ([int(data[i][’error.e_number’]), 1])
field_label .append ([int(data[i][’error.e_number’]), 1])
table_error .append([int(data[i][’error.e_number’]), 1, data[i][~
error.e_name’ |])
print field
else:
count = field[index][1]
count += 1
field [index][1] = count
field_label [index][1] = count
table_error[index][1]

count
field.sort ()

field_label.sort ()
table_error.sort ()

209

599
600
601
602
603
604
605
606
607
608
609

610
611
612
613

614
615
616
617
618

619
620
621
622

623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638

D Source Code D.3 Virtualiser
v_line = "/|"
header = "\nFrequency of Errors: \n"
if col == 1:
header = col_obj.yellow (header)
h_line = col_obj.yellow(h_line)
v_line = col_obj.yellow(v_line)
print header

print h_line
print " Nr.

Error Name\t\t\t"

print h_line
if filus != None:
content = " Nr.

"

filus_fd . write(content)
print table console

for i in range(len(table_error)):

print " $5d %s £7s\t%s %6s\t%s %s" % ((i+l),
1101, v_line, table_error[i][1l],

print table in file

if filus != None:

content = " 85d | %7s\t]| %6s\t]/

table_error[i][1],
filus_fd .write(content)

print h_line

if filus != None:
filus_fd.close ()

elif graph == 1:
if filus != None:
gui.display_graph(data, col,
else:

gui.display_graph(data, col)

7.

if __name__. == /__ _main

start ()

$s" % ((i+l),
table_error[i][2])

file_fd

"+v_line+" Error Number\t"+v_line+" Frequency\t"+v_line+"

| Error Number\t| Frequency\t| Error Name\t\t\t\n\n

v_line , table_error[i

v_line , table_error[i][2])

table_error[i][0],

= filus_fd)

D.3.2 Module gui classes.py

210

ENR S N

e ® 9 o W

D Source Code

D.3 Virtualiser

LISTING D.10: Module gui_classes.py

#!/usr/bin/env python

rrzs

This module contains the classes for the display tool.

qui.py".

Reading University
MSc in Network Centred Computing

a.weise - a.weiselreading.ac.uk - December 2005

rros

from gui_utils complete_days ,
Tkinter
tkFileDialog

tkMessageBox

import find_item ,
import
import
import
import Graphs
import tooltips

from gui_utils import second,

class Colour:

rrs

second_string_to_int ,

complete_hours ,

It is needed by the module

complete_ticks

second_string_only

This class uses the ANSI escape sequences to color the output !

rrs

color = {"reset": "\x1b[0m",
"pold": "\x1b[01Im",
"teal":"\x1b[36;06m",
"turquoise": "\x1b[36;01m",
"fuscia":"\x1b[35;01m",
"purple": "\x1b[35;06m",
"blue": "\x1b[34;01Im",

"darkblue": "\x1b[34;06m",
"green": "\x1b[32;0Im",
"darkgreen": "\x1b[32;06m",
"yellow": "\x1b[33;01m",
"brown": "\x1b[33;06m",
"red":"\x1b[31;0Im",
"darkred": "\x1b[31;06m"}
def __init__(self):
Constructor
pass
def green(self, text):
rr s
dye green
rr s
return self.color[’green’]+text+self.color[’reset’]

"

211

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
9%
97
98
99
100
101

D Source Code

D.3 Virtualiser

def

def

def

def

def

def

def

def

def

red(self, text):

rrs

dye red

rros

return self.color[’red’]+text+self.color[’reset’]

bold (self , text):

rrzs

dye bold

rrzs

return self.color[’bold’]+text+self.color[’reset’]

teal (self , text):

rrzs

dye teal

rrvs

return self.color[’teal’]+text+self.color[’reset’]

turquoise (self , text):

rrs

dye turquoise

rrzs

return self.color[’turquoise’]+text+self.color[’reset’]

fuscia(self, text):

rrzs

dye fuscia

rrzs

return self.color[’fuscia’]+text+self.color[’reset’]

purple (self , text):

rrzs

dye purple

rrs

return self.color[’purple’]+text+self.color[’reset’]

darkred (self , text):

rrzs

dye darkred

rrzs

return self.color[’darkred’]+text+self.color[’reset’]

darkblue (self , text):

rrvs

dye darkblue

rrzs

return self.color[’darkblue’]|+text+self.color[’reset’]

blue (self , text):

rrs

dye blue

212

102
103
104

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

D Source Code D.3 Virtualiser

def

def

def

rrs

return self.color[’blue’]+text+self.color[’reset’]

darkgreen (self , text):

rros

dye darkgreen

rrzs

return self.color[’darkgreen’]+text+self.color[’reset’]

yellow (self , text):

rrzs

dye yellow

rrzs

return self.color[’yellow’]+text+self.color[’reset’]

brown(self , text):

rrs

dye brown

rrs

return self.color[’brown’]+text+self.color[’reset’]

124 class Picture (Tkinter.Tk):

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

rrvs

This class provides functions around the "diplay diagrams" issues.

rrvs

def

__init__(self, color, windows):

rrzs

Constructor
self._col = color
self._windows = []
needed to close all windows properly
self._all_-windows = windows
needed for deactivate and activate all window buttons properly
self._all_windows.append(self)
initialise tkinter
Tkinter . Tk. __init__(self)
set min size
self . minsize (width=500, height=400)
#create frame, where the diagram is drawn later
self.framus = Tkinter.Frame(self)
add frame to dialog
self . framus. grid (
column = 0,

row = 0,

columnspan = 7,

sticky = "news" #north east west south
)

”QUIT” BUTTON
self .button_quit = Tkinter.Button(self , text="quit")

213

D Source Code D.3 Virtualiser

154 self . button_quit. grid(

155 column = 6,

156 row = 1,

157 columnspan = 1,

158 sticky = "e"

159)

160 # tooltips for "QUIT” button

161 tooltips.ToolTip(self.button_quit, follow_mouse=1, text="Please press \"quit

\" to close this window. Note, all windows, which are opened from this

window (child windows) are closed as well !", delay=3500)
162 self . button_quit.configure (command = self.pre_shutdown)
163 # "SAVE AS” BUTTON
164 self.button_save = Tkinter.Button(self, text = "save as")
165 self.button_save. grid(
166 column = 5,
167 row = 1,
168 columnspan = 1,
169 sticky = "e"
170)
171 self.button_save.configure (command = self.save_as)
172 # status bar
173 self.status = Tkinter.Label(self)
174 self.status. grid (
175 column = 0,
176 row = 3,
177 columnspan = 7,
178 sticky = "w"
179)
180 # configure grid
181 self.grid_columnconfigure (0, weight = 1)
182 self.grid_-rowconfigure (0, weight = 1)
183
184 # overwrite function
185 self.protocol ("WM_DELETE_WINDOW", self.shutdown)
186
187 # saves as button hoover method
188 self.button_save.bind ("<Enter>", self._show_save_as_description)
189 self.button_save.bind ("<Leave>", self._hide_description)
190 # tooltips for "SAVE AS” button
191 tooltips.ToolTip(self.button_save , follow_mouse = 1, text = "Please press \"
save as\" to save the diagram as a postscript file.", delay = 3500)
192
193 def deactivate(self):
194 s
195 This function deactivates all buttons.
196 sy
197 self.protocol ("WM_DELETE_WINDOW", self._dummy)
198 self . button_quit.configure (command = self._dummy)
199 self .button_save.configure (command = self._dummy)
200 if self._select_type == ‘error’ or self._select_type == ’date’:
201 self .button_select.configure (command = self._dummy)
202

214

D Source Code D.3 Virtualiser

203 def activate (self):

204 sy

205 This function activates all buttons.

206 rry

207 self.protocol ("wM_DELETE_WINDOW", self.shutdown)

208 self.button_quit.configure (command = self.pre_shutdown)

209 self.button_save.configure (command = self.save_as)

210 if self. _select_type == ’error’:

211 self . button_select.configure (command = self. _select_error)

212 elif self._select_type == ’date’:

213 self . button_select.configure (command = self._select_date)

214

215 def save_as(self):

216 sy

217 This function saves the diagram picture as postscript.

218 rrs

219 # deactivate all buttons

220 try:

221 for i in range(len(self._all_windows)):

222 self._all_windows[i].deactivate ()

223 except Tkinter. TclError:

224 pass

225 # save as dialog

226 result = tkFileDialog.asksaveasfilename (filetypes = [(’postscript’, ’“*.ps’)],
title = “Save graph as ... /)

227 # activate all buttons

228 try:

229 for i in range(len(self._all_-windows)):

230 self. _all_windows[i].activate ()

231 except Tkinter.TclError:

232 pass

233

234 if result != 77:

235 # save diagram in file

236 self.graph.canvas.postscript(file = result, colormode = “color’)

237 ###Graphs. canvas . postscript(file = result, colormode = ’color’)

238

239 def _dummy(self, event = None):

240 s

241 This function is doing nothing, it serves as a dummy.

2 s

243 return ’‘break’

244

245 def show_barchart(self, window_name, listus , label, xlabel, ylabel, data,

select_type=None, filus_fd = None, descript = None):

246 [

247 This function shows a barchart diagram.
248 e

249 self.title (window_name)

250 self. _data = data

251 self. _file_fd = filus_fd

252 self. _select_type = select_type

215

D Source Code D.3 Virtualiser

generate barchart diagram

line = Graphs.GraphBars(listus , color =’green’, size = 6)

graphObject = Graphs.GraphObjects ([line])

self.graph = Graphs.GraphBase(self.framus, 400, 400, relief = ’sunken’,
border = 2, listerus = label, x_label = xlabel, y_label = ylabel, header

= window_name, description = descript, label_interval = 10)
self.graph.pack(side = Tkinter .LEFT, fill = Tkinter .BOTH, expand = Tkinter.
YES)

self.graph.draw (graphObject, ’“automatic’, ’automatic’)

sort items for listbox
self.items = []
self.search_label

1
L]

for i in range(len(label)):

self.search_value

self.items.append(label[i][1])
self.search_value.append(listus[i])
self.search_label .append(label[i])

self.create_listbox ()

def show_line(self, window_name, listus , label, xlabel, ylabel, data,
select_type = None, error = None, labelamount = 10, filus_fd = None,
descript = None, typ = None)

rrzs

This functions shows a line chart diagram.

window_name = name of the new window

listus = value list

label = label list for x-axis

xlabel = description of x-axis

ylabel = description of y-axis

select_type = type of items are listed in listbox

data = dataset which comes from the database query
error = chosen error from listbox

labelamount = amount of possible labels for the x-axis

self . title (window_name)

self. _data = data

self. _file_fd = filus_fd
self. _select_type = select_type

values = []

only draw a dot where is a real value
for i in range(len(listus)):
if listus[i][l] != O
values .append(listus[i])

dot = Graphs.GraphSymbols(values, color = “green’, marker = “dot’, fillcolor

= ’darkgreen’)

216

D Source Code D.3 Virtualiser

299 if len(listus) > 1:

300 line = Graphs.GraphLine(listus , color="green’, size=60)

301 graphObject = Graphs.GraphObjects ([line , dot])

302 else :

303 graphObject = Graphs.GraphObjects ([dot])

304

305 self.graph = Graphs.GraphBase(self.framus, 600, 400, relief = ’sunken’,
border = 2, listerus = label, x_label = xlabel, y_label = ylabel, header
= window_name, description = descript, label_interval = labelamount, type
= typ)

306 self.graph.pack(side = Tkinter .LEFT, fill = Tkinter .BOTH, expand = Tkinter.
YES)

307 self.graph.draw(graphObject, ’“automatic’, ’automatic’)

308

309 if select_type == "date":

310

311 self.items = []

312 self.search_label = []

313 self.search_value = []

314 #rearrange labels for listbox

315 for i in range(len(label)):

316 if listus[i][l] != O

317 self.items.append(label[i][1])

318 self.search_value.append(listus[i])

319 self.search_label .append(label[i])

320

321 # create listbox with dates

322 self.create_listbox (error)

323

324 def create_listbox (self, error = None):

325 sy

326 This function creates a listbox with the given items.

37 rrs

328 # listbox

329 list_scrollbar = Tkinter.Scrollbar(self, orient=Tkinter.VERTICAL)

330 list_scrollbar.grid (row = 1, column = 1, columnspan = 1, sticky = "ns")

331

332 self.listbox = Tkinter.Listbox(self, height = 4, cursor = "plus", bg = "#
ffffff", bd = 1, highlightcolor = "#00ff00", yscrollcommand=
list_scrollbar.set)

333 self.listbox.grid(

334 column = 0,

335 row = 1,

336 columnspan = 1,

337 sticky = "news"

338)

339

340 self.listbox .bind("<Enter>", self._show_description)

341 self.listbox .bind ("<Leave>", self._hide_description)

342

343 list_scrollbar ["command"] = self.listbox .yview

344

217

345
346
347
348
349
350
351

353
354
355
356
357
358
359
360
361
362
363
364

365
366
367
368
369

370

371
372
373

374
375
376

377
378
379
380
381
382
383
384
385
386

387

D Source Code

D.3 Virtualiser

"PLOT” button
self . button_select = Tkinter.Button(self,
self . button_select. grid(

column = 3,

row = 1,

columnspan = 1,

sticky = "w"

)

self. _the_error = error

if self._select_type == ‘error’:

self . button_select.configure (command
elif self._select_type == ’date’:

self . button_select.configure (command

text = "plot")

self. _select_error)

self. _select_date)

self .button_select.bind("<Enter>", self._show_plot_description)

self . button_select.bind("<Leave>", self._hide_description)

tooltips for "PLOT” button

tooltips.ToolTip(self.button_select , follow_mouse = 1, text = "Please press

\"plot\" to generate a new diagram with the selected item from the

listbox.", delay = 3500)

OPTION (dropdown) menu

if self. _select_type == ’error’:
self. _ldate = "%15s" % ("error")
tooltips.ToolTip(self.listbox , follow_mouse = 1, text
error and then press \"plot\" to view this error
tooltips.ToolTip(self.listbox , follow_mouse = 1, text
error and then press \"plot\" to view this error
elif self._select_type == ’date’:
self. _ldate = "%15s" % ("date")
tooltips.ToolTip(self.listbox , follow_mouse = 1, text

= "Please select an

number only.")

= "Please select an

number only.")

= "Please select a

date and then press \"plot\" to view this date only.")

self. _1freq = "%12s" % ("frequency")
self .var = Tkinter. StringVar (self)

activate a trace, which monitores the changes, so in case the drop down

menu is used a function is called
self.var.trace(’w’, self.menu_change)

self.var.set(self. _ldate) # initial value

option = Tkinter.OptionMenu(self , self.var, self._ldate ,

option.bind ("<Enter>", self._show_dropdown_description)
option.bind ("<Leave>", self._hide_description)
if self._select_type == ‘error’:

tooltips.ToolTip(option, follow_mouse

self. _1freq)

=1, text = "Select \"error\" or

\ "

frequency\" to change the order in the listbox:\nerror —-> order by

error numbers (ascending)\nfrequency -> order by frequency (ascending

)"
elif self._select_type == ’date’:

218

D Source Code D.3 Virtualiser

388 tooltips.ToolTip(option, follow_mouse = 1, text = "Select \"date\" or \"
frequency\" to change the order in the listbox:\ndate -> order by

dates (ascending) \nfrequency —> order by frequency (ascending).")

389

390 option. grid(

391 column = 2,

392 row = 1,

393 columnspan = 1,

394 sticky = "w"

395

396

397 # SPACE LABEL

398 labelus = Tkinter.Label(self)

399 labelus . grid(

400 column = 4,

401 row = 1,

402 columnspan = 1,

403 sticky = "news"

404)

405

406 def menu_change(self , name, index, mode):

207 s

408 This function changes the order in the listbox according to the chosen item

in the drop down menu.

409 [

410 temp-_listus = []

411 temp_search_label = []

412

413 change = self.var.get()

414 # for dates

415 if change == self._ldate:

416

417 if self._select_type == ’error’:

418 self .search_label.sort(second_string_to_int)

419 self. _dropdown_description = "change order in listbox, currently
ordered by \"error number\""

420 elif self._select_type == ’date’:

421 self.search_label.sort(second_string_only)

422 self . _dropdown_description = "change order in listbox, currently
ordered by \"date\""

423

424

425 for i in range(len(self.search_label)):

426 # save label

427 temp = self.search_label[i][1]

428 # search for corresponding label in label array

429 for j in range(len(self.search_value)):

430 if self.search_label[i][0] == self.search_value[j][0]:

431 # save corresponding label

432 temp_listus .append([i+1, self.search_value[j][1]])

433 # adjust items

434 temp_search_label .append ([i+1, temp])

219

D Source Code D.3 Virtualiser

435

436 self . items[i] = "8s (%s)"” % (temp_search_label[len(temp_search_label
) —1][1], temp_listus[len(temp_listus) —1][1])

437

438 self.search_value = temp_listus[:]

439 self.search_label = temp_search_label [:]

440

441 # delete old items and write new items in listbox

442 self.listbox .delete (0, Tkinter .END)

443 for i in range(len(self.items)):

444 self.listbox.insert(Tkinter .END, self.items[i])

445

446 # for frequency

447 elif change == self. _l1freq:

448

449 self. _dropdown_description = "change order in listbox, currently ordered

by \"frequency\""

450 self.search_value.sort(second)

451

452 # rearrange order of array

453 for i in range(len(self.search_value)):

454 #save value

455 temp = self.search_value[i][l]

456 # search for corresponding label in label array

457 for j in range(len(self.search_label)):

458 if self.search_label[j][0] == self.search_value[i][0]:

459 # save corresponding label

460 self .items[i] = "8s (%s)" % (self.search_label[j][1], self.

search_value[i][1])

461 temp_search_label .append ([i+1, self.search_label[j][1]])

462 # adjust number in value array

463 self.search_value[i][0] = i+l

464 self.search_value[i][]l] = temp

465

466 # rearrange label array description

467 self.search_label = temp_search_label [:]

468

469 # delete old items and write new items in listbox

470 self.listbox .delete (0, Tkinter .END)

471 for i in range(len(self.items)):

472 self.listbox .insert(Tkinter .END, self.items[i])

473

474 def pre_shutdown(self):

475 s

476 This function calls a message box and make sure the user really wants to

shutdown.

477 [

478 # deactivate all buttons

479 try:

480 for i in range(len(self._all_-windows)):

481 self. _all_windows[i].deactivate ()

482 except Tkinter.TclError:

220

D Source Code D.3 Virtualiser

483 pass

484 # queston message box

485 status = tkMessageBox.askquestion("Close Window", "Do you really want to
close this and all child windows ?2")

486 # activate all buttons

487 try:

488 for i in range(len(self._all_windows)):

489 self. _all_windows[i].activate ()

490 except Tkinter.TclError:

491 pass

492 if status == “yes’:

493 self.shutdown ()

494

495 def shutdown(self):

496 rrs

497 This function closes all open child windows and itself

498 rry

499

500 if self._file_fd != None:

501 if self._all_windows[0] == self:

502 # only main windows closes file

503 self. _file_fd.close ()

504

505 # destroy all cildren windows

506 for i in range(len(self._windows)):

507 try:

508 self._windows[i].shutdown ()

509

510 except Tkinter.TclError:

511 pass

512

513 # destroy myself

514 try:

515 self . destroy ()

516 except Tkinter.TclError:

517 pass

518

519 def _select_error(self):

520 s

521 This function get the selected item from the listbox

520 s

523 try:

524 # get index of chosen listbox item

525 firstIndex = self.listbox.curselection () [0]

526 except IndexError:

527 firstIndex = None

528

529 if firstIndex != None:

530

531 # convert index to int

532 firstIndex = int(firstlndex)

533

221

534
535

536
537
538
539
540
541
542

543

544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560

561
562
563
564

566
567
568
569
570
571
572
573
574
575
576
577
578
579
580

D Source Code D.3 Virtualiser

print data
title = "Diagram Error $%s \"Frequency - Date\"" % self.search_label|
firstIndex][1]

field = []
field_label = []
data_new = []
work up the given data and prepare for display
for i in range(len(self._data)):
if (int(self._data[i][’error.e_number’]) == int(self.search_label[
firstIndex][1])):
data_new .append(self._data[i]) # get new dataset (only
interesting data is taken)
index = find_item (self._data[i][’messages.m _date’], field)
if (None == index):
field .append ([self._data[i][“messages.m _date’], 1])
field_label .append ([self. _data[i]["messages.m date’], 1])
else:
count = field[index][1]
count += 1
field[index J[1] = count
field_label[index][1] = count

field.sort ()
field_label.sort ()

print result table

h.line = " —-—m———————————————C—C—-C—-C—-C—-_(——p—-—_- — "

v_line = "|"

header = "\nFrequency of Error \"$s\":\n" % self.search_label[firstIndex
101]

write in file

if self._file_fd != None:
content = "\n"+header
content += "\n\n Nr. | Date\t\t| Frequency\n\n"

self. _file_fd.write(content)

if self._col == 1:

col_obj = Colour ()

header = col_obj.yellow (header)
h_line = col_obj.yellow(h_line)
v_line = col_-obj.yellow(v_line)

print header
print h_line
print " Nr. "+v_line+" Date\t\t"+v_line+" Frequency"
print h_line

for i in range(len(field)):

222

581

582
583
584
585

586
587
588
589
590
591

593
594
595
596
597
598
599
600
601
602
603
604
605
606

607

608

609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625

D Source Code D.3 Virtualiser

def

print " 25d %s %s\t%s %s" % ((i+1), v_line, field[i][O], v_line,
field[i][1])

write in file
if self. _file_fd != None:
content = " %$5d | %s\t/ %s\n" % ((i+1), field[i][0], field[i
11D

self. _file_fd.write(content)
print h_line
for i in range(len(field_-label)):
temp = field_label[i][O0]
field_label[i][0] = field_label[i][1]
field_label[i][1] = temp
for i in range(len(field)):
field_label [i][0] = (i+1)
field_label[i][1] = "%s" % field[i][O0]
field[i][0] = (i+1)
field_label , field = complete_days(field_label , field)

pic_obj = Picture(self._col, self._all_windows)

self._windows.append(pic_-obj)

title = "Diagram \"Frequency - Date\" - Error: %s" % self.search_label]|
firstIndex][1]
descr = title+" - Range: "+field_label [O][1]+" - "+field_label[len(

field_label) —1][1]#+”)”

pic-obj.show_line (title , field, field_label , "DATE", "FREQUENCY",
data_new , select_type = "date", error = self.search_label[firstIndex
J[1], labelamount = 10, filus_fd = self._file_fd , descript = descr,
typ = "date")

pic_-obj.mainloop ()

else:
disable all buttons within the windows
for i in range(len(self._all_windows)):

self. _all_windows[i].deactivate ()

tkMessageBox .showerror ("Error"”, "No item selected !")
enable all buttons within the windows
for i in range(len(self._all_-windows)):

self. _all_windows[i].activate ()

_select_date (self):

rrzs

This functions take a date and generates a new graph

rrzs

223

626
627
628
629
630
631
632
633
634
635
636
637

638
639
640
641
642
643

644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674

D Source Code D.3 Virtualiser

firstIndex = self.listbox.curselection ()[0]

except IndexError:

firstiIndex = None

if firstIndex != None:

firstIndex = int(firstIndex)

print data
title = "Diagram \"Frequency - Time\" - Date %s" % self.search_label|[
firstIndex][1]

field = []
field_label = []
data_new = []
for i in range(len(self._data)):
if self._data[i][messages.m date’] == self.search_label[firstIndex
1[1] and int(self._the_error) == int(self._data[i][’error.

e_number’]):

data_new .append(self. _data[i])

hour = self._data[i]["messages.m _time’].split(":")

hour[0] = int(hour[0])# hour

index = find_item (hour[0], field)
if (None == index):
field .append ([hour [0], 1])
field_label .append ([hour[0], 1])
else:
count = field[index][1]
count += 1
field[index][1] = count
field_label [index][1] = count

field.sort ()
field_label.sort ()

rearrange arrays for use within the picture and graph class
for i in range(len(field_label)):

temp = field_label[i][O0]

field_label [i][0] = field_-label[i][1]

field_label [i][1]

temp

for i in range(len(field)):
field_label [1][0] = (i+1)
field_label [i][1] = "%s" % field[i][0]
field[i][0] = (i+1)

field_label , field = complete_hours(field_label , field)

224

675
676
677
678
679

680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709

710
711
712
713
714
715
716
717
718
719
720
721
722
723

D Source Code D.3 Virtualiser

field_label , field = complete_ticks(field_label , field)

hline = "——m—————— ————————-—-.C—.—-—;(—C——-. — "

v_line = "/"

header = "\nFrequency on Date \"%s\":\n" % self.search_label[firstIndex
101]

write in file

if self. _file_fd != None:
content = "\n"+header
content += "\n\n Time of Day\t| Frequency\n\n"
self. _file_fd.write(content)

if self._col == 1:
col_obj = Colour ()
print col_obj.yellow (header)
h_line = col_obj.yellow(h_line)
v_line = col_obj.yellow(v_line)

print h_line
print " Time of Day\t"+v_line+" Frequency"

print h_line

for i in range(len(field)):
print " $2s h - %2s h\t%s %s" % (i, i+1, v_line, field[i][1])

if self._file_fd != None:
content = " %2s h - %2s h\t/ %s\n" % (i , i+1, field[i][1])
self. _file_fd.write(content)

print h_line

pic_obj = Picture(self._col, self._all_windows)
self . _windows.append(pic_obj)

pic_obj.show_line(title , field , field_label , "TIME OF DAY (hrs)", "

FREQUENCY", data_new , select_type = "time"”, labelamount=24, filus_fd

= self. _file_fd , descript = title)

pic_obj.mainloop ()

else:

for i in range(len(self._all_-windows)):

self. _all_windows[i].deactivate ()
tkMessageBox . showerror ("Error", "No item selected !")
for i in range(len(self._all_-windows)):

self. _all_windows[i].activate ()

def _show_description(self, event):

rrzs

This function displays the description for the listbox in the status bar.

225

724
725
726

727
728

734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754

755
756
757
758

D Source Code D.3 Virtualiser

def

def

def

def

rrs

if self._select_type == ’error’:
self.status.config(text = "listbox: error number (frequency) —-> select
error to zoom", anchor = "w")
if self._select_type == “date’:
self.status.config(text = "listbox: date (frequency) for the choosen
error —> select date to zoom", anchor = "w")

self.status.update_idletasks ()

_show_plot_description (self , event):

rrzs

This function displays the description of the "plot" button in the status bar

rrzs

self.status.config(text = "plot new diagram", anchor = "w")
self.status.update_idletasks ()

_hide_description (self, event):

rrs

This function deletes the status bar content.
rrs
self.status.config(text="")

self.status.update_idletasks ()

_show_save_as_description(self , event):

rrzs

This function show the description of the "save as" button in the status bar.
rrs
self.status.config(text = "save diagram as postscript file", anchor = "w")

self.status.update_idletasks ()

_show_dropdown_description(self, event):
rrs
This function shows a short description for the dropdown menu in the status

bar.

rrs

self.status.config(text = self._dropdown_description, anchor = "w")

self.status.update_idletasks ()

D.3.3

Module gui utils.py

LISTING D.11: Module gui_utils.py

1 #!/usr/bin/env python

2
3

rrvs

4 This module provides small utility methods that are used by the gui_classes.py and

qui.py.

226

50
51

52
53
54
55

D Source Code D.3 Virtualiser

Reading University

MSc in Network Centered Computing

a.weise - a.weisel@reading.ac.uk - December 2005
sy

import os, time, ConfigParser, string

import gui_classes

import calendar

def LoadConfig(file_name , config={}):
returns a dictionary with key’s of the form

<section>.<option> and the values

source: http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/65334
mmn

config = config.copy ()

cp = ConfigParser.ConfigParser ()

cp.read(file_name)

for sec in cp.sections():
name = string.lower(sec)
for opt in cp.options(sec):
config[name + "." + string.lower(opt)] = string.strip(cp.get(sec, opt))
return config
def usage_exit(progname, msg = None, color = 0):
This function gives usage help and exits script.
if msg:
if 1 == color and msg != None:
color_obj = gui_classes.Colour ()
print color_obj.red (msg)
else :
print msg
print # If cr
text = "usage: python %s -c config_file [optional commands] \n\n" % progname

if 1 == color:

print color_obj.red(text)
else:

print text
os._exit(—1)

def check_time (timus):
rrrs
This functions checks if a given time with the format hour:minute:second
(12:45:46) is valid.

rrvs

timus = timus.split(’:")
if int(timus[0]) < 24 and int(timus[1]) < 60 and int(timus[2]) < 60:
return 0

227

56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71

72
73
74
75
76
77
78
79

80
81
82
83
84
85
86

87
88
89
90
91
92
93
94
95
9%
97
98
99

100

101

102

103

104

105

D Source Code

D.3 Virtualiser

def

def

def

def

else:

return —1

check_date (datus):

rrs

This function checks if a given date is valid.
datus = datus.split(".")
tupl = (int(datus[2]), int(datus[l]), int(datus[O]), O, O, O, O, O, 0)
try :
date = time.mktime (tupl)
tup2 = time.localtime (date)
if tupl[:2] != tup2[:2]:
return —1
else:
return 0
except OverflowError:
return —1
except ValueError:
return —1

convert_date (datus):

rrs

This function converts a date like 01.10.2005 into database conform date like

2005-10-01.
datus = datus.split(".")
return "%s-%s-%s" % (datus[2], datus[1], datus[0])

convert_date_readable (datus):

rr s

This function converts a date like 2005-10-10 into are readable format
01.10.2005.

rr s

datus = datus.split("-")

return "%s.%s.%s" % (datus[2], datus[1], datus[0])

check_ip (ip):

rrzs

This function checks if a given IP is valid.
try:

ip = ip.split(".")
except AttributeError:

return —1

for i in range(len(ip)):
check = ip[i].find("0", 0, 1)
if —1 != check and 1 < len(ip[i]):
return —1
try:
ip[i] = int(ip[il])

228

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

144
145
146
147
148
149

150
151
152
153

D Source Code D.3 Virtualiser

def

def

except ValueError:
return —1

if ip[i] >= 0 and ip[i] <= 255:
pass

else:
return —1

return 0

find_item (search, listus):

rrvs

This function find an item within a list (2 dimensional)

rrvs

for i in range(len(listus)):
if 1 == len(listus[i]):

if listus[i] == search:
return i
elif 2 == len(listus[i]):
if listus[i][0] == search:
return i
elif 3 == len(listus[i]):
if listus[i][0][0] == search:
return i

return None

help_context(color):

rrvs

This function provides the help context.

rrvs

color_obj = gui_classes.Colour ()
msg = '/
if color == 1:
msg += color_obj.green("\n-—————-—--—- Help —————————- \n\n\n")
else:
msg += "\n-—————————- Help —————————— \n\n\n"
note = "PLEASE NOTE, if you give parameter values, please do not enter characters

like \" \" (space) or \"!\", because this could be characters which are
interpreted by the terminal. If you have to enter such characters, please
escape them like \"\!\".\n\n"
if color == 1:
msg += color_obj.purple(note)
else:
msg += note

msg += "-c or --config\t\t\t-> defines config file, if no config file given,
default values are used\n"\
"-v or —-verbose\t\t\t-> activates printing of messages [debug option]\n"\
"-h or —--—help\t\t\t-> print this help\n"\
"-g or —-graph\t\t\t-> show output additionally as a diagram\n"\

"——nocolor\t\t\t-> no colored console output\n"\

229

D Source Code D.3 Virtualiser

154 "--file <string>\t\t\t-> dump output into a file (file name has to be given)\
n"

155

156 if color == 1:

157 msg += color_obj.green("\n-———-- database commands ——---— \n\n")

158 else:

159 msg += "\n--———— database commands ———--— \n\n"

160 msg += "--sgl_host\t\t\t-> show all hosts\n"\

161 "-—sqgl_project\t\t\t-> show all projects\n"\

162 "-—sqgl_error\t\t\t-> show errors (additional parameters possible)\n"\

163 "--sql_error_freg\t\t-> show only frequency of errors (additional parameters

possible)\n"

164 if color == 1:

165 msg += color_obj.green("\n-————- additional parameters ——-—--— \n'")

166 else:

167 msg += "\n-———- additional parameters ———--— \n"

168 msg += "\n--start_date <date>\t\t-> start date (e.g. 23.12.2005)\n"\

169 "-—end_date <date>\t\t-> end date (e.g. 23.01.2006)\n"\

170 "-—start_time <time>\t\t-> start time (e.g. 23:12:19)\n"\

171 "-—end_time <time>\t\t-> end time (e.g. 23:12:59)\n"\

172 "——ip <ip>\t\t\t-> host IP (e.g. 127.0.0.1)\n"\

173 "--project <string>\t\t-> specify a certain project\n"\

174 "——error <int,int...>\t\t-> specify a certain error (comma seperated list)\n"

175 if color == 1:

176 msg += color_obj.green("\n——— examples ————-— \n\n")

177 msg += color_obj.blue("python gui.py -c config _gui.ini --sqgl_project\n")

178 msg += color_obj.yellow ("\t-> show all projects\n\n")

179

180 msg += color_obj.blue("python gui.py -c config_gui.ini --sqgl_host\n")

181 msg += color_obj.yellow ("\t-> show all host and the corresponding project\n\n
")

182

183 msg += color_obj.blue("python gui.py -c config gui.ini --sqgl_error —-—
start_date 01.01.2005 --end_date 01.03.2005 --ip 127.0.0.1\n")

184 msg += color_obj.yellow ("\t-> show all errors of localhost between 01.01.2005

and 01.03.2005\n\n")

185

186 msg += color_obj.blue("python gui.py -c config _gui.ini --sqgl_error —-—
start_date 01.01.2005 --project mySRBproject\n")

187 msg += color_obj.yellow ("\t-> show all errors between 01.01.2005 and now for
the project \"mySRBproject\"\n\n")

188

189 msg += color_obj.blue("python gui.py -c config _gui.ini --sql_error —-—
start_date 22.10.2005 --end_date 22.10.2005\n—--start_time 12:00:00 ——
end_time 18:00:00 -—-ip 127.0.0.1 --file test.txt\n")

190 msg += color_obj.yellow ("\t-> show all errors on the 22.10.2005 between 12 h
and 18 h on localhost and\n\t save output in file \"test.txt\"\n\n")

191

192 msg += color_obj.blue("python gui.py -c config _gui.ini --sql_error_freq —--
error -1023 --ip 127.0.0.1 -g \n")

193 msg += color_obj.yellow("\t-> show error frequency for the error -1023 from

host 127.0.0.1 and display diagram\n\n")

230

194
195
196
197
198
199
200
201
202
203
204

205
206

208
209

210

211
212

213

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

231
232
233
234
235
236

D Source Code D.3 Virtualiser

def

else:
msg
msg

msg

msg

msg

msg

msg

msg

msg

msg

msg

msg

msg +=

+= "\n-———- examples ————- \n\n"
+= "python gui.py —-c config_gui.ini —--sqgl_project\n"
+= "\t-> show all projects\n\n"

+= "python gui.py -c config_gui.ini --sqgl_host\n"

+= "\t-> show all host and the corresponding project\n\n"

+= "python gui.py -c config _gui.ini --sql_error --start_date 01.01.2005
-—-end_date 01.03.2005 —-ip 127.0.0.1\n\t-> show all errors of localhost
between 01.01.2005 and 01.03.2005\n\n"

+= "python gui.py —-c config gui.ini --sql_error —--start_date 01.01.2005
--project mySRBproject\n"

+= "\t-> show all errors between 01.01.2005 and now for the project \"
mySRBproject\"\n\n"

+= "python gui.py -c config _gui.ini --sql_error —--start_date 22.10.2005
——end_date 22.10.2005\n--start_time 12:00:00 —-—-end_time 18:00:00 —-ip
127.0.0.1 —-file test.txt\n"

+= "\t-> show all errors on the 22.10.2005 between 12 h and 18 h on

localhost and\n\t save output in file \"test.txt\"\n\n"

+= "python gui.py -c config _gui.ini --sql_error_freq —--error -1023 --ip
127.0.0.1 -g \n"
+= "\t-> show error frequency for the error -1023 from host 127.0.0.1 and

display diagram\n\n"

"\n"

return msg

complete_hours (label , field):

rrs

This function completes the missing hours within an array

rrs

new_hours = []
new_values = []
count = 0

for i in range(len(label)):

temp = "%d" % count
while (count < 24):

if temp == label[i][1l]:

break
new_hours.append ([count, temp])
new_values.append ([count, 0])
count += 1
temp = "2d" % count

231

D Source Code D.3 Virtualiser

237 new_hours.append ([count, label[i][1]])
238 new_values.append ([count, field[i][1]])
239

240 count += 1

241

242 # last hours

243 while (count <= 23):

244 temp = "%d" % count

245 new _hours . append ([count, temp])

246 new_values.append ([count, 0])

247 count += 1

248

249 return new_hours, new_values

250

251 def complete_days(days, value_field):

252 sy
253 This function completes the missing dates within an array.
254 s

255 if len(days) == 1:

256 # if only one day in the field

257 return days, value_field

258

259 new_days = [] # new array with the completed days

260 new_values = []

261

262 for i in range(len(days)):

263 dayl = days[i][1l].split("-")

264 day2 = days[i+1][1].split("=")

265

266 for x in range(len(dayl)):

267 dayl[x] = int(dayl[x])

268 day2[x] = int(day2[x])

269

270 if dayl[0] == day2[0] and dayl[l] == day2[1] and (dayl[2]+1) == day2[2]:
271 # save dayl in new array

272 templ = "%d" % dayl[2]

273 temp2 = "%d" % dayl[1]

274 date = "8d-" % dayl[0]

275 if len(temp2) == 1:

276 date += "0%d-" % dayl[1]

277 else:

278 date += "8d-" % dayl[1]

279

280 if len(templ) == 1:

281 date += "0%d" % (dayl[2])

282 else:

283 date += "8d" % (dayl[2])

284

285 if len(new_days) ==

286 number = 1

287 else:

288 number = int(new_days[len(new_days) —1][0])+1

232

289
290
291
292
293
294
295

296
297
298
299

300
301
302
303

304

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

D Source Code

D.3 Virtualiser

def

date])
value _field[i][1]])

new_days.append ([number ,

new_values.append ([number,
else :

not the following day

if dayl[0] day2[0] and dayl[1]

#year and month the same

day2[1]:
new_days, new_values =
value_field[i][1])

elif dayl[O0] day2[0]:
year the same
new_days, new_values =

value_field [i][1])

else:
year change
new_days, new_values =
value_field[i][1])

if (i+2) == len(days):

break
add last date
templ = "8d" % day2[2]

temp2 = "8d" % day2[1]
date = "8d-" % day2[0]

if len(temp2) == 1:

date += "0%d-" % day2[1]
else:

date += "%d-" % day2[1]

== 1:

if len(templ
date += "0%d" % day2[2]

else:
date += "8d" % day2[2]
if len(new_days) == O0:
number = 1
else:
number = int(new_days[len(new_days) —1][0])+1

date])
value_field[i+1][1]])

new_days.append ([number ,

new_values.append ([number,

return new_days, new_values

complete_d (new_array , start_date , end_-date, new_field,

rrvs

Add missing dates within a month

rrs

month = calendar.monthcalendar(start_date [O],

complete_d (new_days,

complete_m (new_days ,

complete_y (new_days,

dayl, day2, new_values,
dayl, day2, new_values,
dayl, day2, new_values,
value):

start_date [1])

233

338
339
340
341
342
343
344

346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389

D Source Code

D.3 Virtualiser

run through matrix and save all dates between dayl and day2
found = 0
terminate = 0

for x in range(len(month)):

if terminate != 0:
break

for y in range(len(month[x])):
go to current dayl

if terminate != 0:
break
if start_date[2] == month[x][y] and found ==
#save datel in new_days
templ = "8d" % start_date[2]
temp2 = "8d" % start_date[1]
date = "8d-" % start_date [0]
if len(temp2) == 1:

date += "0%d-" % start_date[1]
else:
date += "%d-" % start_date [1]

if len(templ) == 1:

date += "0%d" % start_date [2]
else:

date += "%d" % start_date [2]

if (0 < len(new_.array)):
number = int(new_array[len(new_array) —1][0])+1
else:
number = 0
new_array .append ([number, date])
new_field .append ([number, value])

found = 1
elif found == 1:

add new dates

if end_date[2] == month[x][y]:
terminate = 1

else:
save dates
templ = "8d" % month[x][y]
temp2 = "8d" % end_date[1]

date = "%d-" % end_date [0]
if len(temp2) == 1:

date += "0%d-" % end_date[1]
else:

date += "%d-" % end_date[1]

if len(templ) == 1:

in new_days array

234

D Source Code D.3 Virtualiser

390 date += "0%d"” % month[x][y]
391 else:

392 date += "$d" % month[x][y]
393

394 # get next entry number in arrays
395 if (0 < len(new_array)):

396 number = int(new_array[len(new_array) —1][0])+1
397 else:

398 number = 0

399 new_array .append ([number, date])
400 new_field .append ([number, 0])

401 else:

402 pass

403

404 return new_array , new_field

405

406 def complete_m(new_array, start_date , end_date, new_field, value):

407 s

408 This function adds missing dates within a year.

409 s

410 start_month = start_date[1]

411 end_month = end_date[1]

412

413 #current month

414 month = calendar.monthrange(start_date [0], start_date[l])

415 temp-date2 = [start_date[0], start_date[1], month[1]]

416

417 new_array , new_field = complete_d(new_array, start_date , temp-date2, new_field,
value)

418

419 start_month += 1

420

21 # month in between

422 while (start_month < end_month):

423

424 month = calendar.monthrange(start_date [0], start_month)

25 temp.-date2 = [start_date [0], start_month, month[1]]

426 temp_datel = [start_date[0], start_month, 1]

427

428 new_array , new_field = complete_d(new_array , temp._datel , temp_date2,

new_field , 0)

429

430 start_month += 1

431

432 # last month

433 temp-_datel = [start_date[0], start_month, 1]

434

435 new_array , new_field = complete_.d(new_array, temp-datel , end_date, new_field, 0)

436

437 return new_array , new_field

438

439 def complete_y(new_array, start_date , end_date, new_field, value):

235

D Source Code D.3 Virtualiser

440 1o

441 This function adds missing dates within many years

442 rrs

443 start_year = start_date[O]

444 end_year = end_date[0]

445

446 # current year

447 temp_date2 = [start_date[0], 12, 31]

448 new_array , new_field = complete_.m(new_array , start_date , temp_date2, new_field,
value)

449

450 start_year += 1

451

452 # years in between

453 while (start_year < end_year):

454

455 temp_datel = [start_year , 1, 1]

456 temp_date2 = [start_year , 12, 31]

457 new_array , new_field = complete_m(new_array , temp-datel , temp-_date2,

new _field , 0)

458 start_year += 1

459

460 # last year

461 temp_datel = [start_year , 1, 1]

462 new_array , new_field = complete_m(new_array , temp._datel , end_date, new_field, 0)

463

464 return new_array , new_field

465

466 def complete_ticks(label, values):

467 rr

468 This function adds bins, so that the dot in the time diagram are between two
hours.

469 a4

470 new_label = []

471 new_values = []

472

473 count = 0

474 for i in range(2=xlen(label)):

475 if (i%2) '= 0:

476 new_values.append ([i, values[count][1]])

477 new_label .append ([i, ""])

478 count += 1

479 else:

480 new_label .append ([i, label[count][1]])

481

482 return new_label , new_values

483

484 def second(tl, t2):

485 rrr

486 This function works with sort and the field gets sorted descending, but the
second value within the array is taking into account !!!

487 e

236

489
490
491
492
493

494
495
496
497
498
499
500

501
502
503

22

D Source Code D.4 Remote Controller

def

def

sort descending
return t2[1] — tl1[1]

second_string_to_int(tl, t2):

rrs

This function works with sort and the field gets sorted ascending, but the second
value within the array is taking into account !!! (The values to be sort are
number as strings.)

sort ascending

return int(tl[1]) — int(t2[1])

second_string_only (tl, t2):

rrs s

This function works with sort and the field gets sorted ascending, but the second
value within the array is taking into account !!! (The values to be sort are
strings.)

rr s

sort ascending

return cmp(tl[1], t2[1])

D.4 Remote Controller

LISTING D.12: Module admin_server.py

#!/usr/bin/env python

rrzs

This module can be used to administer the server (daemon).

Reading University

MSc in Network Centered Computing

a.weise - a.weisef@reading.ac.uk - December 2005

rros

config parsing

import ConfigParser, string

#misc

import os, getopt, sys, re

connection issues

from M2Crypto.m2xmlrpclib import Server, SSL_Transport

from M2Crypto import SSL

def

LoadConfig(file , config={}):

mown

This function returns a dictionary with key’s of the form

237

27

32

37

42

47

52

57

62

67

72

D Source Code

D.4 Remote Controller

<section>.<option> and the corresponding values.

source: http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/65334

mwn

config = config.copy ()
cp = ConfigParser. ConfigParser ()
cp.read(file)
for sec in cp.sections():
name = string.lower(sec)

for opt in cp.options(sec):

config[name + "." + string.lower(opt)] = string.strip(cp.get(sec,

return config

class Colour:

rrzs

This class uses the ANSI escape sequences to color the output !

s

color = {"reset":"\x1b[0Om",
"bold": "\x1b[0Im",
"teal":"\x1b[36;06m",
"turquoise": "\x1b[36;01m",
"fuscia":"\x1b[35;01m",
"ourple": "\x1b[35;06m",
"blue":"\x1b[34;01m",
"darkblue":"\x1b[34;06m",
"green": "\x1b[32;0Im",
"darkgreen": "\x1b[32;06m",
"yellow":"\x1b[33;0Im",
"prown":"\x1b[33;06m",
"red": "\x1b[31;0Im",
"darkred": "\x1b[31;06m"}

def __init__(self):

rrs

Constructor

rrs

pass

def green(self, text):

rrzs

dye green

rrzs

return self.color[’green’]+text+self.color[’reset’]

def red(self, text):

rrzs

dye red

rrvs

return self.color[’red’]+text+self.color[’reset’]

def bold(self, text):

opt))

238

71

82

87

92

97

102

107

112

117

122

127

D Source Code

D.4 Remote Controller

def

def

def

def

def

def

def

def

rrzs

dye bold

rrs

return self.color[’bold’]+text+self.color[’reset’]

teal (self, text):

rrzs

dye teal

rrzs

return self.color[’teal’]+text+self.color[’reset’]

turquoise (self , text):

rrzs

dye turquoise

rrzs

return self.color[’turquoise’]+text+self.color[’reset’]

fuscia(self , text):

rrs

dye fuscia

rrs

return self.color[’fuscia’]+text+self.color[’reset’]

purple (self , text):

rrzs

dye purple

rrzs

return self.color[’purple’]+text+self.color[’reset’]

darkred (self , text):

rrvs

dye darkred

rrzs

return self.color[’darkred’|+text+self.color[’reset’]

darkblue (self , text):

rrs

dye darkblue

rrzs

return self.color[’darkblue’]+text+self.color[’reset’]

blue (self , text):

rrzs

dye blue

rrrs

return self.color[’blue’]+text+self.color[’reset’]

darkgreen (self , text):

rrvs

dye darkgreen

rrs

return self.color[’darkgreen’]+text+self.color[’reset’]

239

132

137

1

N

2

147

152

157

162

167

172

D Source Code

D.4 Remote Controller

def

def

yellow (self , text):

rrs

dye yellow

rros

return self.color[’yellow’]+text+self.color[’reset’]

brown(self , text):

rrzs

dye brown

rrzs

return self.color[’brown’]|+text+self.color[’reset’]

class Admin:

rrzs

This 1s manager

rrs

def

__init__(self, config)

rrs

Constructor

rrzs

class for the Remote Controller application.

workingpath = os.getcwd ()

varify user input

self. __client_certificate = config.get("files.client_certificate™)
self. __client_certificate_path = config.get("path.path_client_certificate™)
self. __client_certificate_path = self.__client_certificate_path.rstrip("/")
if (config.get("path.path_client_certificate") == 7’ or config.get("path.
path_client_certificate™) == None):
self.__client_certificate_path = workingpath
else:
self. __client_certificate = self.__client_certificate.strip ()
if (-1 != self.__client_certificate_path.find("/", 0, 1)):
first character /7
pass
else:
self. __client_certificate_path = workingpath+"/"+self.
__client_certificate_path
self.__client_ca = config.get("files.client_ca")
self.__client_ca_path = config.get("path.path_client_ca")
self.__client_ca_path = self.__client_ca_path.rstrip("/")
if (config.get("path.path_client_ca") == ’’ or config.get("path.path _client_ca
") == None) :
self. __client_ca_path = workingpath
else:
self.__client_ca = self.__client_ca.strip ()
if (=1 != self.__client_ca_path.find("/", 0, 1)):

first character /7

pass

240

D Source Code D.4 Remote Controller

177 else:
self.__client_ca_path = workingpath+"/"+self.__client_ca_path

check if file are existing
if (0 == os.access((self.__client_ca_path+"/"+self.__client_ca), 4)): # 4
R_OK
182 print "\nCould not access client ca certificate under \"$s\" !\nMaybe
change configuration file and try again!/\n\n" % (self.
__client_ca_path+"/"+self.__client_ca)
os. _exit(—1)

if (0 == os.access((self.__client_certificate_path+"/"+self.
__client_certificate), 4)): # 4 R.OK
print "\nCould not access client certificate under %s !\nMaybe change
configuration file and try again!/\n\n" % (self.
__client_certificate_path+"/"+self. __client_certificate)
187 os._exit(—1)

def connect_to_server(self, server, port):

rrs

This function establishs the connection to the server.

192 s
serverus = server
ctx = self.create_ctx ()

connect to server via SSL using the created context
197 urladdress = "https://%s:%d" % (serverus, port)

server = Server(urladdress , SSL_Transport(ctx))

return server object

return server

202 def create_ctx (self):
rrs
This funciton creates the SSL context to establish an encrypted connetion by
using certificates.
rrs
ctx = SSL.Context(protocol="sslv3’) # use SSLv3 only
207 ctx.load_cert(self. __client_certificate_path+"/"+self. __client_certificate)

load client certificate

ctx.load_client _CA (self.__client_ca_path+"/"+self.__client_ca) # load
certificate authority private key

ctx.set_info_callback () # tell me what you’'re doing —— debug

ctx.set_session_id_ctx (’server’) # session name

return ctx

212
additional functions
def usage_exit(progname, msg = None, color = 1):
rr s
217 This function gives usage help and exits the module.

rrs

241

222

227

232

237

242

247

252

257

262

267

D Source Code D.4 Remote Controller

def

def

if msg:
if 1 == color and msg != None:
color_obj = Colour ()
print color_obj.red (msg)
else :
print msg
print # If cr

text = "usage: python $s -c config _file [optional commands] \n\n" % progname
if 1 == color:
print color_obj.red(text)
else:
print text
os._exit(—1)

check_ip (ip):
rrs
This function checks if a given IP is valid and returns -1 for an invalid IP

address otherwise 0.

try:

ip = ip.split(".") # split in 4 number
except AttributeError:

return —1

for i in range(len(ip)):

check = ip[i].find("0", 0, 1)

if —1 != check and 1 < len(ip[i]):
return —1

try:
ip[i] = int(ip[i])

except ValueError:
return —1

if ip[i] >= 0 and ip[i] <= 255: # check if number is between 0 and 255
pass

else:
return —1

return 0

find_item (search, listus):

This function finds an item within a list (1-3 dimensional) and returns the 1list
index otherwise "None".

rrs s

for i in range(len(listus)):
if 1 == len(listus[i]):

if listus[i] == search:
return i
elif 2 == len(listus[i]):
if listus[i][0] == search:

242

D Source Code D.4 Remote Controller

return i
elif 3 == len(listus[i]):
if listus[i][0][0] == search:
272 return i

return None

def help_context(color):

rrvs

277 This function provides the help context.
color_obj = Colour ()
msg = 7/
282 if color == 1:
msg += color_obj.green("\n-————-———~ Help —————————— \n\n\n")
else:
msg += "\n-————————-—- Help —————————- \n\n\n"
287 note = "PLEASE NOTE, if you give parameter values, please do not enter characters

like \" \" (space) or \"!\", because this could be characters which are
interpreted by the terminal. If you have to enter such characters, please
escape them Ilike \"\!\".\n\n"
if color == 1:
msg += color_obj.purple(note)
else:
msg += note

292
msg += "-c or --config\t\t\t-> defines config file, if no config file given,
default values are used\n"\
"-h or —-help\t\t\t-> print this help\n"\
"——nocolor\t\t\t—> no colored console output\n"
if color == 1:
297 msg += color_obj.green("\n-————- server commands ———--— \n\n")
else:
msg += "\n-————- server commands ————-— \n\n"
msg += "--rpc_status\t\t\t-> show actual setting of rpc (disabled/enabled) (on
server side)\n"\
"-—disable_rpc\t\t\t-> disable rpc calls (on server side)\n"\
302 "-—enable_rpc\t\t\t-> enable rpc calls (on server side)\n"\
"——shutdown\t\t\t-> shutdown server\n"\
"-—change_interval <int>\t\t-> change parsing interval of server\n"\
"——keyword_status\t\t-> show actual setting of \"keywords\" (on server side)\
n"
"——add_keyword <string>\t\t-> add keyword to keyword list (on server side)\n"
\
307 "——delete_keyword <string>\t-> delete keyword to keyword list (on server side

)\n"\

"-—ignore_error_status\t\t-> show actual setting of \"ignoer_error\" (on
server side) \n"\

"—-add_ignore_error <int>\t-> add error, which the parser should ignore (on

server side)\n"\

243

312

317

322

327

332

337

342

347

352

D Source Code D.4 Remote Controller

"--delete_ignore_error <int>\t-> delete error, which the parser is ignoring (

on server side)\n"

if color == 1:

msg += color_obj.green("\n-———- additional parameters ——--—-- \n")
else:

msg += "\n--—---— additional parameters —-———-— \n"

msg += "\n--ip <ip>\t\t\t-> host IP\n"\

"——port <int>\t\t\t-> port, where the server is listening\n"

if color == 1:
msg += color_obj.green("\n——— examples ————-— \n\n")
msg += color_obj.blue("python gui.py -c config _gui.ini --disable_rpc -—ip

127.0.0.1 —--port 6000\n")
msg += color_obj.yellow("\t-> disable rpc calls on localhost\n\n")

msg += color_obj.blue("python gui.py -c config _gui.ini --ip 127.0.0.1 —--port

6000 —--add_keyword status:\!error\n")
msg += color_obj.yellow("\t-> add new keyword set \"status AND NOT error\"

into keyword file on localhost\n\n")

else:
msg += "\n--—-—- examples ————- \n\n"\
"python gui.py —-c config_gui.ini --disable_rpc --ip 127.0.0.1 --port
6000\n\t-> disable rpc calls on localhost\n\n"\
"oython gui.py -c config_gui.ini —--ip 127.0.0.1 --port 6000 --—
add_keyword status:\!error\n\t-> add new keyword set \"status AND
NOT error\" into keyword file on localhost\n\n"
msg += "\n"

return msg

RARRRARRRHAAHRARRGHAAARRRRGAAARRRRRAARARRRRRARAARRRRRARARRARAH

def start():

rrzs

The functions starts the application.
s

col =1

rpc_status = None
disable_rpc = None
enable_rpc = None
shutdown = None
change_interval = None
interval_status = None
keyword_status = None
add_keyword = None
delete_keyword = None
add_error = None

delete_error = None
error_status = None
ip = None

port = None

244

D Source Code D.4 Remote Controller

parameter evaluation

357 try:
opts, args = getopt.getopt(sys.argv[l:], “c:hg’, [’config=’, ’"nocolor’, "help
’/, ’rpc_status’, ’‘disable_rpc’, ’enable_rpc’, ’shutdown’, '
interval_status’, ’change_interval=’, ’"keyword_status’, ’add_keyword=’", '
delete_keyword=’, ’ignore_error_status’, ’add_ignore_error=’, '
delete_ignore_error=', ’"ip=’, ’‘port='])
for opt, value in opts:
if opt in (’’, ’—--nocolor’):
col =0
362 if opt in (’-h’,’--help’):
msg = help_context(col)
usage_exit(sys.argv[0], msg, col)
if opt in (’-c¢’, "--config’):
value = value.replace("=", "")
367 configfile = os.getcwd()+"/"+value
for opt, value in opts:
if opt in (’’, ’/—--rpc_status’):
rpc_status = 1
372 if opt in (’’, ’/--disable_rpc’):
disable_rpc =1
if opt in (’’, ’"--enable rpc’):
enable_rpc = 1
if opt in (’’, ’--shutdown’):
377 shutdown = 1
if opt in (’’, ’—-—-interval_status’):
interval_status = 1
if opt in (’’, ’--change_interval’):
change_interval = int(value)
382 if opt in (’’, ’—-—-keyword status’):
keyword_status = 1
if opt in (’/’, ’--add_keyword’):
add_keyword = value
if opt in (’’, ’'—-—delete_keyword’):
387 delete_keyword = value
if opt in (’’, ’/--add_ignore error’):
add_error = int(value)
if opt in (’’/, ’'--delete_ignore_error’):
delete_error = int(value)
392 if opt in (’’, ’--ignore_error_status’):
error_status = 1
if opt in (’/,’ —ip’):
ip = value
status = re.search(’”"[0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3}’, ip
)
397 if (None == status):

usage_exit(sys.argv[0], “given IP is not valid’, col)
else:

ip = status.string[status.start():status.end()]

if (0 != check_ip(ip)):

245

D Source Code D.4 Remote Controller

402 usage_exit(sys.argv[0], ‘given IP is not valid’, col)
if opt in (’’/, "—-port’):
port = int(value)
if (port < 1024 or port > 50001):
usage_exit(sys.argv[0], "Server port is out of range! \nMake sure

the server port lies between 1025 (inclusive) and 50000 (
inclusive) !\n\n", col)
407 except getopt.error, e:
e = "8s" % e
usage_exit(sys.argv[0], e, col)
except ValueError, e:
e = "8s" % e

412 usage_exit(sys.argv|[0], e, col)

load config file or default values

if (configfile != ""):
check if file exists
417 if (1 == os.path.exists(configfile)):

config = LoadConfig(configfile)

else:
if file NOT exists terminate program
print "\n\nSorry, a given config file does NOT exist !\nPlease try again

'\n\n"
422 os. _exit(—1)
else:
msg = "\nNo config file spezified !\n"

usage_exit(sys.argv[0], msg, col)

427
gui = Admin(config)
if col == 1:
col_obj = Colour ()
432
SERVER COMMANDS
if (1 == rpc_status):
get rpc status on server side
437 if (None != ip and None != port):
text = "Check RPC status on server \"$s:%d\"." % (ip, port)
if col == 1:
text = col_obj.yellow(text)
print
442 print text
serv_object = gui.connect_to_server (ip, port)
try:
answer = serv_object.rpc_status ()
if col == 1I:
447 answer = col_obj.green(answer)

print "\nserver -> %s" % answer
except AssertionError:

text = "Server is down !"

246

452

457

462

472

477

482

487

492

497

502

D Source Code D.4 Remote Controller
if col == 1:
print col_obj.red(text)
else:
print text
except:
text = "Could not connect to server \"%£s:%d\"." % (ip, port)
if col == 1:
print col_obj.red(text)
else:
print text
else:
text = "\nNo IP or port given !\n"
if col == 1:
print col_obj.red(text)
else:
print text
elif (1 == disable_rpc):
disable_rpc on server side
if (None != ip and None != port):
text = "Disable RPC on server \"$s:%d\"." % (ip, port)
if col == 1:
text = col_obj.yellow (text)
print
print text
serv_object = gui.connect_to_server (ip, port)
try:
answer = serv_object.disable_rpc_calls ()
if col == 1:
answer = col_obj.green(answer)
print "\nserver -> %s" % answer
except AssertionError:
text = "Server is down !"
if col == 1:
print col_obj.red(text)
else:
print text
except:
text = "Could not connect to server \"%s:%d\"." % (ip, port)
if col == 1:
print col_obj.red(text)
else:
print text
else:
text = "\nNo IP or port given !\n"
if col == 1:

print col_obj.red(text)

else:
print text

elif (1 == enable_rpc):

enable_rpc on server

side

247

D Source Code D.4 Remote Controller

if (None != ip and None != port):
text = "Enable RPC on server \"$s:%d\"." % (ip, port)
if col == 1I:

text = col_obj.yellow(text)

print
print text
serv_object = gui.connect_to_server (ip, port)
try:
answer = serv_object.enable_rpc_calls ()
if col == 1:
answer = col_obj.green(answer)

print "\nserver -> %s" % answer
except AssertionError:
text = "Server is down !"
if col == 1:
print col_obj.red(text)
else:
print text

except:
text = "Could not connect to server \"$s:%d\"." % (ip, port)
if col == 1:
print col_obj.red(text)
else:
print text
else:
text = "\nNo IP or port given !\n"
if col == 1:

print col_obj.red(text)
else:
print text

elif (1 == shutdown):
shutdown the server
if (None != ip and None != port):
text = "Shutdown server \"$s:%d\"." % (ip, port)
if col == 1:

text = col_obj.yellow(text)

print
print text
serv_object = gui.connect_to_server(ip, port)
try:
answer = serv_object.stop_server ()
if col == 1:
answer = col_obj.green(answer)

print "\nserver -> %s" % answer
except AssertionError:
text = "Server is down !"
if col == 1:
print col_obj.red(text)
else:
print text
except:

248

557

562

567

572

577

582

587

592

597

602

D Source Code D.4 Remote Controller

text = "Could not connect to server \"%s:8d\"." % (ip, port)
if col == 1:
print col_obj.red(text)
else :
print text
else :
text = "\nNo IP or port given !\n"
if col == 1:
print col_obj.red(text)
else:
print text

elif (None != change_interval):
change parsing interval time
if (None != ip and None != port):
text = "Change parsing interval on server \"$s:%d\" to %d minutes." % (ip
, port, change_interval)
if col == 1:
text = col_obj.yellow(text)

print
print text
serv_object = gui.connect_to_server (ip, port)
try:
answer = serv_object.rpc_update_configuration("misc", "minute",

change_interval , 2)
if answer == 0:
answer = "interval successfully to %d minutes changed" %

change_interval

else:

answer = "could not change interval \n-> \"$s\"" % answer
if col == 1:

answer = col_obj.green(answer)

print "\nserver -> %s" % answer
except AssertionError:
text = "Server is down !"
if col == 1:
print col_obj.red(text)
else:
print text

except:
text = "Could not connect to server \"$s:%d\"." % (ip, port)
if col == 1:
print col_obj.red(text)
else:
print text
else:
text = "\nNo IP or port given !\n"
if col == 1:

print col_obj.red(text)
else:
print text

249

607

612

617

622

627

632

637

642

647

D Source Code D.4 Remote Controller

elif (1 == error_status):

get ignore error status from server

if (None != ip and None != port):

text = "Get status for \"ignore_ error\" from server \"$s:%d\"." % (ip,
port)
if col == 1:
text = col_obj.yellow(text)
print
print text
serv_object = gui.connect_to_server (ip, port)
try:
answer = serv_object.rpc_update_configuration("misc", "ignore_error",
0, 4)
if col == 1I:
answer = col_obj.green(answer)

print "\nserver -> %s" % answer
except AssertionError:
text = "Server is down !"
if col == 1:
print col_obj.red(text)
else:
print text

except:
text = "Could not connect to server \"$s:%d\"." % (ip, port)
if col == 1:
print col_obj.red(text)
else:
print text
else:
text = "\nNo IP or port given !\n"
if col == 1:
print col_obj.red(text)
else:
print text
elif (None != add_error):

add ignore error
if (None != ip and None != port):

text = "Add \"ignore_error\" %s on server \"%s:%d\"." % (add_error, ip,
port)

if col == 1:
text = col_obj.yellow(text)

print

print text

serv_object = gui.connect_to_server (ip, port)

try:
answer = serv_object.rpc_update_configuration("misc", "ignore_error",

add_error, 1)
if col == 1:
answer = col_obj.green(answer)
print "\nserver -> %s" % answer

except AssertionError:

250

652

657

662

667

672

677

682

687

692

697

D Source Code

D.4 Remote Controller

text = "Server is

if col == 1:
print col_obj

else :
print text

except:

"Could not

== 1:

print col_obj

text =

if col

else:
print text
else:
text =
= 1:
print

if col

else:
print text

elif (None !=
delete

delete_error):

ignore error

"\nNo IP or port given

down "

.red(text)

connect to server

.red(text)

\n"

col_obj.red(text)

if (None != ip and None != port):

text =

, ip, port)
if col == 1:

text =
print
print text
serv_object =
try:

answer =

delete_error

if col == 1:
answer =
print "\nserver ->

gui.connect_-to_server (ip,

col_obj.yellow (text)

port)

serv_object.rpc_update_configuration ("misc"”,

. 0)

col_obj.green(answer)

%s" % answer

except AssertionError:

text = "Server is down !"
if col == 1:
print col_obj.red(text)
else:
print text
except:
text = "Could not connect to server
if col == 1:
print col_obj.red(text)
else:
print text
else:
text = "\nNo IP or port given !\n"
if col == 1
print col_obj.red(text)
else:
print text

"gs:8d\"." % (ip,

"gs:gd\". " % (ip ,

port)

"Delete \"ignore_error\" $s on server \"$s:%d\"." % (delete_error

"ignore_error",

port)

251

702

707

712

717

722

727

732

737

742

747

752

D Source Code D.4 Remote Controller

elif (1 == keyword_status):
get keywords which are used currently
if (None != ip and None != port):
text = "Get keywords from server \"%s:%s\"." % (ip, port)
if col == 1:

text = col_obj.yellow(text)

print
print text
serv_object = gui.connect_to_server (ip, port)
try:
answer = serv_object.rpc_update_keyword_file ("status", 2)
if col == 1I:
answer = col_obj.green(answer)

print "\nserver -> %s" % answer
except AssertionError:
text = "Server is down !"
if col == 1:
print col_obj.red(text)
else:
print text

except:
text = "Could not connect to server \"$s:%d\"." % (ip, port)
if col == 1:
print col_obj.red(text)
else:
print text
else:
text = "\nNo IP or port given !\n"
if col == 1I:

print col_obj.red(text)
else:
print text

elif (None != add_keyword):
add new keyword
if (None != ip and None != port):

text = "Add keyword \"$s\" on server \"$s:%s\"." % (add_keyword, ip, port
)
if col == 1:
text = col_obj.yellow(text)
print
print text
serv_object = gui.connect_to_server (ip, port)
try:
answer = serv_object.rpc_update_keyword_file (add_keyword, 1)
if col == 1I:
answer = col_obj.green(answer)

print "\nserver -> %s" % answer
except AssertionError:

text = "Server is down !"

252

757

762

767

772

777

782

787

792

797

802

D Source Code D.4 Remote Controller

if col == 1I:

print col_obj.red(text)
else:

print text

except:
text = "Could not connect to server \"%£s:%d\"." % (ip, port)
if col == 1:
print col_obj.red(text)
else:
print text
else:
text = "\nNo IP or port given !\n"
if col == 1:

print col_obj.red(text)
else:
print text

elif (None != delete_keyword):
delete keyword
if (None != ip and None != port):
text = "Delete keyword \"%$s\" in keyword list on server \"%s:%s\"." % (
delete_keyword , ip, port)
if col == 1:

text = col_obj.yellow (text)

print
print text
serv_object = gui.connect_to_server (ip, port)
try:
answer = serv_object.rpc_update_keyword_file (delete_keyword, 0)
if col == 1:
answer = col_obj.green(answer)

print "\nserver -> %s" % answer
except AssertionError:
text = "Server is down !"
if col == 1:
print col_obj.red(text)
else:
print text

except:
text = "Could not connect to server \"%s:%d\"." % (ip, port)
if col == 1:
print col_obj.red(text)
else:
print text
else:
text = "\nNo IP or port given !\n"
if col == 1:

print col_obj.red(text)
else:
print text

elif (1 == interval_status):

253

807

812

817

822

827

837

842

847

D Source Code

D.5 GZ Parser

get current parsing

interval time

if (None != ip and None != port):

text = "Get parsing interval time (in minutes) from server \"%$s:%s\"." %

(ip, port)

if col == 1:

text = col_obj.yellow(text)

print

print text
serv_object
try:

answer =

if answer

gui.connect_to_server (ip, port)

serv_object.rpc_interval_status ()

1= —2:

answer = "every %d minutes" % answer

else:

answer = "RPC disabled"

if col =

1:

answer = col

_obj.green(answer)

print "\nserver -> $s" % answer

except AssertionError:

text = "Server is down !"

if col =

1

print col_obj.red(text)

else:
prin
except:

t

text

text = "Could not connect to server \"%s:%d\"." % (ip, port)

if col =

1

print col_obj.red(text)

else:
prin
else:

t

text

text = "\nNo IP or port given !\n"

if col == 1:

print col_obj.red(text)

else:

print text

else :

text = "No command given

usage_exit(sys.argv[0],

if __name__. == /_ _main

start ()

7.

!'\nUse option -h or —--help to display the help."

text, col)

D.5 GZ Parser

254

D Source Code D.5 GZ Parser

LISTING D.13: Module gz_parser.py

#!/usr/bin/env python

rrzs

4 This is the gz _parser.py module, which uses an external config file (e.g.
config _gz_parser.ini) to parse through a directory with x.gz files. The

server_classes.py 1s also needed.

Reading University
MSc in Network Centered Computing

a.weise - a.weisel@reading.ac.uk - December 2005

9 777

import os, sys, string, re, stat
from server_classes import LogFileParser
import ConfigParser, getopt

gz_list = [] #save =x.gz files

def LoadConfig(file , config={}):
19 mmwn
This functions returns a dictionary with key’s of the form

<section>.<option> and the values

source: http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/65334
24 mnn

config = config.copy()

cp = ConfigParser.ConfigParser ()

cp.read (file)

for sec in cp.sections():
29 name = string.lower(sec)

for opt in cp.options(sec):
config[name + "." + string.lower(opt)] = string.strip(cp.get(sec, opt))

return config

34 def parse_directory(arg, dirname, fnames):
s
This function "walks" through a given directory and considers all srbLOGx.gz
files. The name and last modified time are saved in a list (2 dimensional
array). The function should be used with os.path.walk (path, function_name,
arg) !
d = os.getcwd ()
39 # change into log file directory
try :
os.chdir(dirname)
except:
print "could not find directory \"%s\"" % dirname
44 return —1
for each file

255

49

54

59

64

69

74

79

84

89

94

D Source Code

D.5 GZ Parser

def

def

for f in fnames:
check if file and if file is a log file e.g. srbLog.20051003.gz
if (not os.path.isfile(f)) or (None == re.search(’ “srbLog[_0-9.-]*.gz",
continue
get last modified time
date = os.stat(f)[stat.ST.MTIME]
create tupel
tupel = (date, f)
save last modified time and filename into am arrray (list)
gz_list.append(tupel)
change back into the working directory
os.chdir(d)

get_keywords (filus):

rrvs

This function extracts keyword from a give file!

keys = []
try:
file_fd = file (filus, "r”)
except IOError, e:
print "Problem with keyword file —> ", e
return —1
content = file_fd.readlines ()# save file content as list (I line == 1 entry)

file_fd .close ()

content = remove-item (content, "#") # remove comments

content = remove-item (content, "\n")# remove linebreaks

for i in range(len(content)):

content[i] = content[i].strip ()
content[i] = content[i]. rstrip(",")
content[i] = content[i].split(", ")

for a in range(len(content[i])):
keys.append(content[i][a])

for i in range(len(keys)):
keys[i] = keys[i].strip () # remove whitespace
keys[i] = keys[i].split(":")

return keys
remove_item (listus , item):

rrvs

This function removes "items" form a list object rekursiv.

rrvs

while (1) :

f)):

256

D Source Code D.5 GZ Parser

for i in range(len(listus)):
99 if —1 != listus[i].find(item, 0, 1):
del listus[i]
remove_item (listus , item)
break
else:
104 break

return listus

def gunzip(filus , name_-temp-_file="temp_srbLog"):
109 s
This function unzips a *.9z file using the system tool gunzip. Make sure when
calling the function the file exists in this directory. The function creates
a temporary file and leave the orignal x.gz file untouched!
rrs
if (not os.path.isfile(filus)):

return —1

114 else:
command = "gunzip -c %s > %s" % (filus, name_temp_file)
s.system (command)
return 0

119 def delete_file (filus):

rrvs

This functions deletes a given file.
try :
124 os.remove(filus)
return 0
except:
print "could not delete -> ", filus

return —1

129
def usage_exit(progname, msg=None):
This function displays the usage of the program and terminated the script.
134 if msg:
print msg
print
print "usage: $s -h|--help -c|--config -v|--verbose " % progname
os._exit(—1)
139
[l daddadalaladdadaladadaadadalaididaiarardaladadaddaladalslsss
def start():
144 This function starts the application.

rrs

global gz_list
gz_list = [] #save =*.gz files

257

149

154

159

164

169

174

179

184

189

194

D Source Code D.5 GZ Parser

configfile = ""
verbose = 0

evaluate parameters
try:
opts, args = getopt.getopt(sys.argv[l:], “c:vh’, [’config=’, ’verbose’, ’help
1
for opt, value in opts:
if opt in (’-h’,’--help’):
msg = "Help:\n-c or —--config\t->\tdefines config file, if no config
file given, default values are used\n-v or --verbose\t->)\
tactivates printing of messages [debug option]\n-h or —--help\t->\
tprints this help"
usage_exit(sys.argv[0], msg)
elif opt in (/-c¢’,”--config’):
value = value.replace("=", "")
configfile = os.getcwd()+"/"+value
elif opt in (’-v’,’—-verbose’):
verbose = 1
else:
usage_exit(sys.argv[0], "Wrong use of parameter™)
except getopt.error, e:

usage_exit(sys.argv[0], e)

load config file or default values
if (configfile != ""):
check if file exists
if (1 == os.path.exists(configfile)):
config = LoadConfig(configfile)
else:
if file NOT exists terminate program
print "Sorry, a given file does NOT exist !\nPlease try again!\n\n"
os._exit(—1)
else:
msg = "\nNo config file spezified !\n"

usage_exit(sys.argv[0], msg)

print "\n\n-—————- GZ SRB LOG FILE PARSER —————-— "

workingpath = os.getcwd ()

path_srb_gz = config.get("path.path_srb_gz")
path_srb_gz = path_srb_gz.rstrip("/")
path_xml_file = config.get("path.path_xml_file")
path_xml_file = path_xml_file.rstrip("/")

xml_file_name = "gz_client_log.xml"

check if the configuration is correct
if (0 == os.path.exists(path_srb_gz)):
print "Could not locate log file archive path under %s !\nMaybe change

configuration file and try again!/\n\n" % path_srb_gz

258

199

204

209

214

219

224

229

234

239

244

D Source Code D.5 GZ Parser

os._exit(—1)

if (0 == os.path.exists(path_xml_file)):
print "Could not locate xml path under %s !\nMaybe change configuration file
and try again!\n\n" % path_xml_file

os._exit(—1)

keyword = config.get("file.keyword")
keyword_path = config.get("path.path_keyword")
if keyword != None:
keyword = keyword. strip ()
if keyword_path != None:
keyword_path = keyword_path.rstrip("/")
if (keyword_path == ’’ or keyword_path == None):
keyword_path = workingpath
else:
if (-1 != keyword_path.find("/", 0, 1)):
first character /7
pass
else :
keyword_path = workingpath+"/"+keyword_path

keyword_list = get_keywords (keyword_path+"/"+keyword)

ignore_error = config.get("misc.ignore_error")
if ("" != ignore_error):
ignore_error = ignore_error.split(”,")
for i in range(len(ignore_error)):
ignore_error[i] = int(ignore_error[i].strip())
parserus = LogFileParser(path_srb_gz , keyword_list, ignore_error, os.getcwd(), "
temp_client_log.xml", verbose)

os.path.walk(path_srb_gz , parse_directory , gz_list)
d = os.getcwd ()
os.chdir(path_srb_gz)
if (0 < len(gz_list)):
try:
for x in range(len(gz_list)):
print "\n"
print x+1,
print ". parsing -> \"$s\"\n" % gz_list[x][1]
gunzip(gz_-list[x][1])
status = os.stat(gz_list[x][1])
parserus.analyse_log_file ("temp_srbLog", file_time=status[8])
delete_file ("temp_srbLog")
except:
os.remove ("temp_srbLog")
os.chdir (d)
os.remove("temp_client_log.xml")
print "Problem parsing log files -> terminating !"
os._exit(0)

259

249

254

259

264

269

D Source Code D.5 GZ Parser

if

else:
print "Could not find any srbLogx.gz files!"
os._exit(0)

os.chdir(d)

test_file = "%s/%s"” % (path_xml_file, xml_file_name)

check if a gz-client_log.xml already there, if yes change name

c =1
while (1) :
if (0 == os.path.exists(test_file)):
break
test_file = "%s/%d_%s" % (path_xml_file, ¢, xml_file_.name)
c += 1

print "\ncopy xml file ..."
command = "cp temp_client_log.xml %s" % test_file

0s.system (command)

delete temporary xml file
delete_file ("temp_client_log.xml™)

print "\n\ndone ... \n\n"
__name__. == ’/__main__’:
start ()

260

Appendix E

CD ROM

Content
L Monitoring Tools
L readme.txt

L Server
Lstart,server.py

Lserver,classes.py
qutils,server.py
Lstop,server.sh

— Client
Lstart,client.py
Lclient,classes.py
qutils,client.py
Lstop,client.sh

— Virtualiser
Lrgui.py
Lgui,classes.py
L—gui,utils.py
- Graphs.py
L—utils.py
L tooltips.py

261

Appendix F

Publications

The following paper was presented at the 2006 SDSC SRB Workshop. The 2006 SDSC
SRB Workshop was a forum for SRB user community researchers and practitioners to
share their knowledge, experiences, and solutions in utilizing this technology, to gain
additional insight into SRB configurations, techniques, and options, and to provide
feedback to, and hear of future development plans from, the SRB team. [S1] It was
held February 2nd and 3rd at SDSC in San Diego. [31]]

262

F Publications

D.5 GZ Parser

Some Toolsfor Supporting SRB Production Services

R. Downing
CCLRC-Daresbury Laboratory

A. Weisg, C. Koebernick
University of Reading

A. Hasan
CCLRC-Rutherford Appleton Laboratory

Abstract

Providing production-level services requires
monitoring applications, performance and intercepting
errors as soon as they occur. In this paper we describe
some of the tools that have been developed to assist
production SRB services. We describe the approaches
used and how they can be more generally applied.

1. Introduction

The Data Management Group (DMG)[1] is part of the
Council for the Central Laboratory of the Research
Councils (CCLRC) e-science centre [2] and provides data
storage solutions for a large number of e-science projects.
The DMG uses the Storage Resource Broker (SRB) [3] as
the core component for many projects, tailoring the
system to meet the needs of the project. Once a system is
deployed the DMG aso provides a level of support for
the service ranging from troubleshooting to responding to
further feature requests and upgrades.

Through the course of developing various SRB
systems we have managed to identify a number of tasks
that appear common and which greatly help in supporting
a production system. In this paper we describe a few of
the tools devel oped to aid this task.

* This work has been funded by a range of UK agenciesincl. the e-
Science Programmes of the Natural Environmental Research Council,,
the Engineering and Physical Science Research Council, the Council of
the Central Laboratory of the Research Councils, the Biotechnology
and Biological Sciences Research Council and the Joint Information
Systems Committee.

101

2. Monitoring Production Servers

Careful monitoring of production servers provides a
number of benefits: aids debugging, provides information
on the distribution of load in the system and provides
information for planning purposes. Troubleshooting and
load balancing require both instantaneous information
and aso historic information whereas planning requires
only historic information.

2.1. Ganglia and Nagios Monitoring

Since the SRB system is distributed any monitoring
application must be capable of working with distributed
systems. With this requirement in mind we have selected
Nagios [4] to report instantaneous information on server
properties, such as cpu, machine load, etc. The Nagios
system emails a list of subscribers when any of the
monitored properties of a server go beyond an acceptable
threshold limit as well as reporting when a server is
down.

For the collection of historic information we chose
Ganglia[5]. The Ganglia monitoring system collects a set
of system properties at regular intervals and stores them
in a round-robin database. It is also possible to monitor
additional properties by providing a script to extract these
properties to Ganglia. The system aso provides tools for
presenting the information as a series of web-pages (see
figure 1). As we run more than one SRB server on agiven
host we needed to make a minor kludge to allow the same
host to appear in more than one group.

263

F Publications

D.5 GZ Parser

Cluster Report for Thu, 22 Dec 2005
11:04:51 +0000 CetfreshiDatal
Metric [load_one ol Las

8 [month =] sorted [descending =]

SKB Data Grid > DMG1 > —Ch

Figure 1: Ganglia web page displaying usage for a test
SRB server.

3. Monitoring SRB Server Log Files

Each SRB server writes activity information to a log
file. These log files contain information about which
process, and from which machine, connected to the SRB
server as well as error messages detected by the server
when handling a request. These error messages along
with the time that they occurred are an essentia tool in
troubleshooting. It isimportant to notify administrators as
sooN as an efror occurs, it is also important to log the
error messages in order to identify chronic problems and
possibly identify patterns.

Any application to monitor the log files would need to
be able to parse the log files for error messages, email to
a subscriber list serious errors and collect in a central
location the error messages for later searches. With these
requirements we decided to build a system in Python to
parse, log and notify when error messages occurred [6].

It is possible that Ganglia could be used to parse the
log files and store the resulting error messages in a central
round-robin database, but we found that the database was
not flexible enough for our queries and we also required
email notification when problems occurred.

The system essentially consists of three components: a
Parser a Collector and a Displayer, figure 1 shows a
simple diagram of how the application works.

SRB Server
Ve D\
Log Filej

xml message
returned

Client
xml-rpc query \
to parse log file

errors stored

Collector \ -

L .

Figure 2: A smple schematic showing the log file
parser system.

The Parser is actualy an XML-RPC server that is
started on the SRB server host and consists of a method
to parse the SRB log file. The Collector is a daemon that
sends an XML-RPC message to the Parser to parse the
log file. The parser then returns an XML message
containing the error message, line number, date, server
and error message code to the Collector. The Collector
then extracts the information from the XML message and
stores the contents in an SQLite database and sends an
email containing the error message information to alist of
subscribers. The list of SRB servers that the Collector
should contact and the frequency with which to contact
themisread from a configuration file.

The Displayer is used to graphicaly display the error
messages as a function of server that can help in
identifying potentially chronic problems with a server.
The Displayer can also plot error messages of a particular
type as a function of time that may reveal interesting
patterns that could help troubleshooting. Figure 2 shows a
screenshot of a histogram of error messages for a given
server.

— 8 X 266
Diagram “"Error Mumber - Frequency”
2000
1500
1600
1437
£ 1e00
R
E 1200
i
9 1000
N
2 soo
¥
00
400
200 T
az 53 46 37
. 2 W = il 3z 2z
-1107 [[] U 104 | 111 [IBEEEEEE]
-1023 22 10 113
ERROR MUMBER
999999 S
-1023 i_i

B frequency —| plot | saveas | quit
104

264

F Publications

D.5 GZ Parser

Figure 3: Screenshot of the error message numbers
extracted from an SRB log file.

The numbers above the bars correspond to the actual
occurrences of errors with that error number and error
number 999999 corresponds to messages that do not have
an SRB defined error number.

The Parser assumes al messages are error messages
unless the user specifies in a configuration file a pattern
contained in messages that should be ignored. The
approach of assuming every message is an error ensures
that we do not accidentally miss an unusual error

message.
4. Toolsfor Measuring Performance

Measuring the performance of a system is important as
it helps to determine the capabilities of the system, it
helps to determine bottlenecks in the system and it
provides a means of tuning a system. We have devel oped
aframework that can be used to run performance tests [7]
and a number of scripts that execute performance tests
using Scommands on an SRB system.

The framework consists of the Ganglia monitoring
system to monitor the SRB server and client application,
an SQLite database to hold the measurements and
Collector collect the results from Ganglia and store them
in the SQL ite database. The framework can also display,
in real-time, graphs of the server properties as a function
of time. A Displayer is aso provided to graphicaly
display previous data with the option to overlay previous
performance tests. Figure 3 shows a simple schematic of
the framework.

SRB Server
Ve N

SRBApp \

gmond

Client interacts XML messages

with server

. Host X
Client -
Ve N
\)
Collector -
clientApp \ -
gmond DB
] —
4 _ /

Figure 4: Schematic of the framework for performance
measurements.

The Ganglia gmond daemons on the client and server
machine are started by the Collector daemon before the
performance tests start. The Collector collects the

103

monitoring information in the form of XML messages at
periodic intervals, extracts the information from the XML
message and stores it in the SQL ite database.

At this point the client application can be started and the
performance measurements are recorded. The Collector
reads from a configuration file the host names and
applications that should be monitored as well as the
interval at which the data should be collected. Figure 4
shows the cpu-load graph produced by the Displayer.In
principle, the framework is not tied to the SRB and can
be used for any application.

X cpu_load =153

20

o

60

2w

40

20

0.0 3.6 67.1 106,7 134.2 167.8 2013 234,37 268.4 302.0

TIME in sec

Td 0
cpu

cpu_load
memory

Save graph

20
Legend

Ready

Figure 3: Graph of cpu-load produced by the
Displayer application.

In order to measure the performance of an SRB system
we have developed a set of tools based on the
Scommands. The tools are capable of storing information
in the SRB as collections, containers or smply files. The
tools are configurable and can store large numbers of
objects in flat or nested directory structures and are also
capable of producing nested collections. The tools can
also store variable amounts of metadata within the SRB.

265

F Publications

D.5 GZ Parser

5. Conclusion

Monitoring a production system is an essentia aid in
planning future extensions to the system, it can aso be an
essential aid in troubleshooting. Tools to carry out
performance tests and collection, store and present the
data are also important as they provide a means of
providing a references against which the production
system performance can be measured. Such tools can aso
help in troubleshooting problems either by comparing the
performance against a benchmark, or simply by
exercising a particular aspect of the system.

In this paper we have described a few of the tools that
we have developed to help our production systems. All
the tools we have developed are extensible as they have
to accommodate new features or aspects of the production
system.

References

[1] http://mwww.e-science.clre.ac.uk/web/groups/Date
M anagement/Data-M anagement

[2] http://mww.rcuk.ac.uk/escience

[3] http://mwww.sdsc.edu/srb

[4] http://mww.nagios.org

[5] http://ganglia.sourceforge.net

[6] A.Wese, M.Sc Thesis (in preparation).

[7] C. Koebernick. M.Sc Thesis (in preparation).

104

266

Appendix G

Declaration of Authorship

I declare that this dissertation is my own, unaided work, except where otherwise ac-
knowledged or referenced. It is being submitted for the degree of Master of Science at

the University of Reading.

It has not been submitted before for any other degree or examination in any other

university.

Reading, 4th March 2006

Andrea Weise

267

	Title
	Acknowledegments
	Abstract
	Contents
	Abbreviations
	1 Introduction
	1.1 About This Dissertation
	1.2 Motivation
	1.3 Project Description
	1.4 State-of-the-Art

	2 Fundamentals
	2.1 Basic Network Principles
	2.1.1 TCP/IP
	2.1.2 HTTP
	2.1.3 SMTP

	2.2 Client-Server-Architecture
	2.3 Network Security
	2.3.1 SSL/ TSL
	2.3.1.1 Overview
	2.3.1.2 SSL Handshake
	2.3.1.3 Remarks

	2.4 XML
	2.4.1 Overview
	2.4.2 Restrictions
	2.4.3 API's
	2.4.3.1 DOM
	2.4.3.2 SAX

	2.5 Database
	2.6 Python - ``Batteries Included''

	3 Analysis
	3.1 Existing Parsing Technologies
	3.2 Communication Technologies
	3.3 Daemon
	3.4 SRB Log File
	3.5 OpenSSL
	3.6 SQLite - A Light Database Engine
	3.7 Graphical User Interface (GUI)

	4 Design
	4.1 General Aspects
	4.2 Server
	4.2.1 Server Class Diagram Design

	4.3 Client
	4.3.1 Client Class Diagram Design

	4.4 Database Design
	4.5 Virtualiser
	4.5.1 Virtualiser Class Diagram Design

	4.6 Remote Controller
	4.7 GZ Parser

	5 Implementation
	5.1 General Aspects
	5.2 SimpleSSLXMLRPCServer
	5.3 The Parsing Approach
	5.3.1 Keywords
	5.3.2 Line Processing

	5.4 How to Stop a Daemon
	5.5 XML
	5.5.1 XML Creation
	5.5.2 Problems with XML

	5.6 Threads
	5.7 Graphical User Interface
	5.8 Further Usability Improvements

	6 Evaluation and Results
	6.1 Server
	6.2 Client
	6.3 Other Applications

	7 Conclusion
	7.1 Summary
	7.2 Achievements

	8 Future Prospects
	References
	A Development Environment
	B Detailed Class Diagrams
	B.1 Remote Controller
	B.2 Server
	B.3 Client
	B.4 Virtualiser

	C Software User Manuals
	C.1 Server
	C.1.1 Configure the Server
	C.1.2 Examples

	C.2 Client
	C.2.1 Configure the Client
	C.2.2 Examples

	C.3 Virtualiser
	C.3.1 Examples

	C.4 Remote Controller
	C.4.1 Examples

	C.5 GZ Parser

	D Source Code
	D.1 Server
	D.1.1 Module start_server.py
	D.1.2 Module server_classes.py
	D.1.3 Module utils_server.py
	D.1.4 Script stop_server.sh

	D.2 Client
	D.2.1 Module start_client.py
	D.2.2 Module client_classes.py
	D.2.3 Module utils_client.py
	D.2.4 Script stop_client.sh

	D.3 Virtualiser
	D.3.1 Module gui.py
	D.3.2 Module gui_classes.py
	D.3.3 Module gui_utils.py

	D.4 Remote Controller
	D.5 GZ Parser

	E CD ROM
	F Publications
	G Declaration of Authorship

